Source code for langchain_community.agent_toolkits.powerbi.chat_base
"""Power BI 代理。"""
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_community.agent_toolkits.powerbi.prompt import (
POWERBI_CHAT_PREFIX,
POWERBI_CHAT_SUFFIX,
)
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.agents import AgentExecutor
from langchain.agents.agent import AgentOutputParser
from langchain.memory.chat_memory import BaseChatMemory
[docs]def create_pbi_chat_agent(
llm: BaseChatModel,
toolkit: Optional[PowerBIToolkit] = None,
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
output_parser: Optional[AgentOutputParser] = None,
prefix: str = POWERBI_CHAT_PREFIX,
suffix: str = POWERBI_CHAT_SUFFIX,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
memory: Optional[BaseChatMemory] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""使用Chat LLM和工具构建Power BI代理。
如果只提供工具包而没有Power BI数据集,则相同的LLM将用于两者。
"""
from langchain.agents import AgentExecutor
from langchain.agents.conversational_chat.base import ConversationalChatAgent
from langchain.memory import ConversationBufferMemory
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools()
tables = powerbi.table_names if powerbi else toolkit.powerbi.table_names
agent = ConversationalChatAgent.from_llm_and_tools(
llm=llm,
tools=tools,
system_message=prefix.format(top_k=top_k).format(tables=tables),
human_message=suffix,
input_variables=input_variables,
callback_manager=callback_manager,
output_parser=output_parser,
verbose=verbose,
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
memory=memory
or ConversationBufferMemory(memory_key="chat_history", return_messages=True),
verbose=verbose,
**(agent_executor_kwargs or {}),
)