Source code for langchain_community.chains.graph_qa.falkordb

"""在图上的问答。"""
from __future__ import annotations

import re
from typing import Any, Dict, List, Optional

from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate
from langchain_core.pydantic_v1 import Field

from langchain_community.chains.graph_qa.prompts import (
    CYPHER_GENERATION_PROMPT,
    CYPHER_QA_PROMPT,
)
from langchain_community.graphs import FalkorDBGraph

INTERMEDIATE_STEPS_KEY = "intermediate_steps"


[docs]def extract_cypher(text: str) -> str: """从文本中提取Cypher代码。 参数: text:要从中提取Cypher代码的文本。 返回: 从文本中提取的Cypher代码。 """ # The pattern to find Cypher code enclosed in triple backticks pattern = r"```(.*?)```" # Find all matches in the input text matches = re.findall(pattern, text, re.DOTALL) return matches[0] if matches else text
[docs]class FalkorDBQAChain(Chain): """用生成Cypher语句针对图形进行问答的链。 *安全提示*:确保数据库连接使用的凭据范围狭窄,仅包括必要的权限。 如果未能这样做,可能会导致数据损坏或丢失,因为调用代码可能会尝试执行会导致删除、变异数据或在适当提示的情况下读取敏感数据的命令,如果数据库中存在这样的数据。 防范这种负面结果的最佳方法是(根据需要)限制授予此工具使用的凭据的权限。 有关更多信息,请参见https://python.langchain.com/docs/security。""" graph: FalkorDBGraph = Field(exclude=True) cypher_generation_chain: LLMChain qa_chain: LLMChain input_key: str = "query" #: :meta private: output_key: str = "result" #: :meta private: top_k: int = 10 """查询返回的结果数量""" return_intermediate_steps: bool = False """是否返回中间步骤以及最终答案。""" return_direct: bool = False """是否直接返回查询图形的结果。""" @property def input_keys(self) -> List[str]: """返回输入的键。 :元数据 私有: """ return [self.input_key] @property def output_keys(self) -> List[str]: """返回输出键。 :元数据 私有: """ _output_keys = [self.output_key] return _output_keys @property def _chain_type(self) -> str: return "graph_cypher_chain"
[docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, *, qa_prompt: BasePromptTemplate = CYPHER_QA_PROMPT, cypher_prompt: BasePromptTemplate = CYPHER_GENERATION_PROMPT, **kwargs: Any, ) -> FalkorDBQAChain: """从LLM初始化。""" qa_chain = LLMChain(llm=llm, prompt=qa_prompt) cypher_generation_chain = LLMChain(llm=llm, prompt=cypher_prompt) return cls( qa_chain=qa_chain, cypher_generation_chain=cypher_generation_chain, **kwargs, )
def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: """生成Cypher语句,使用它在数据库中查找并回答问题。""" _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() callbacks = _run_manager.get_child() question = inputs[self.input_key] intermediate_steps: List = [] generated_cypher = self.cypher_generation_chain.run( {"question": question, "schema": self.graph.schema}, callbacks=callbacks ) # Extract Cypher code if it is wrapped in backticks generated_cypher = extract_cypher(generated_cypher) _run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose) _run_manager.on_text( generated_cypher, color="green", end="\n", verbose=self.verbose ) intermediate_steps.append({"query": generated_cypher}) # Retrieve and limit the number of results context = self.graph.query(generated_cypher)[: self.top_k] if self.return_direct: final_result = context else: _run_manager.on_text("Full Context:", end="\n", verbose=self.verbose) _run_manager.on_text( str(context), color="green", end="\n", verbose=self.verbose ) intermediate_steps.append({"context": context}) result = self.qa_chain( {"question": question, "context": context}, callbacks=callbacks, ) final_result = result[self.qa_chain.output_key] chain_result: Dict[str, Any] = {self.output_key: final_result} if self.return_intermediate_steps: chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps return chain_result