from __future__ import annotations
import logging
import uuid
from typing import Any, Dict, Iterable, List, Optional, Tuple, Type
import sqlalchemy
from sqlalchemy import func
from sqlalchemy.dialects.postgresql import JSON, UUID
from sqlalchemy.orm import Session, relationship
try:
from sqlalchemy.orm import declarative_base
except ImportError:
from sqlalchemy.ext.declarative import declarative_base
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.utils import get_from_dict_or_env
from langchain_core.vectorstores import VectorStore
Base = declarative_base() # type: Any
ADA_TOKEN_COUNT = 1536
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
[docs]class BaseModel(Base):
"""所有SQL存储的基础模型。"""
__abstract__ = True
uuid = sqlalchemy.Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
[docs]class CollectionStore(BaseModel):
"""集合存储。"""
__tablename__ = "langchain_pg_collection"
name = sqlalchemy.Column(sqlalchemy.String)
cmetadata = sqlalchemy.Column(JSON)
embeddings = relationship(
"EmbeddingStore",
back_populates="collection",
passive_deletes=True,
)
[docs] @classmethod
def get_by_name(cls, session: Session, name: str) -> Optional["CollectionStore"]:
return session.query(cls).filter(cls.name == name).first() # type: ignore
[docs] @classmethod
def get_or_create(
cls,
session: Session,
name: str,
cmetadata: Optional[dict] = None,
) -> Tuple["CollectionStore", bool]:
"""获取或创建一个集合。
返回[Collection, bool],其中bool为True,如果集合被创建。
"""
created = False
collection = cls.get_by_name(session, name)
if collection:
return collection, created
collection = cls(name=name, cmetadata=cmetadata)
session.add(collection)
session.commit()
created = True
return collection, created
[docs]class EmbeddingStore(BaseModel):
"""嵌入式存储。"""
__tablename__ = "langchain_pg_embedding"
collection_id = sqlalchemy.Column(
UUID(as_uuid=True),
sqlalchemy.ForeignKey(
f"{CollectionStore.__tablename__}.uuid",
ondelete="CASCADE",
),
)
collection = relationship(CollectionStore, back_populates="embeddings")
embedding = sqlalchemy.Column(sqlalchemy.ARRAY(sqlalchemy.REAL)) # type: ignore
document = sqlalchemy.Column(sqlalchemy.String, nullable=True)
cmetadata = sqlalchemy.Column(JSON, nullable=True)
# custom_id : any user defined id
custom_id = sqlalchemy.Column(sqlalchemy.String, nullable=True)
[docs]class QueryResult:
"""查询结果。"""
EmbeddingStore: EmbeddingStore
distance: float
[docs]class PGEmbedding(VectorStore):
"""使用`pg_embedding`扩展作为向量存储的`Postgres`。
pg_embedding默认使用顺序扫描。但是你可以使用create_hnsw_index方法创建一个HNSW索引。
- `connection_string`是一个Postgres连接字符串。
- `embedding_function`是实现`langchain.embeddings.base.Embeddings`接口的任何嵌入函数。
- `collection_name`是要使用的集合的名称。(默认值:langchain)
- 注意:这不是表的名称,而是集合的名称。
表将在初始化存储时创建(如果不存在)。
因此,请确保用户有权限创建表。
- `distance_strategy`是要使用的距离策略。(默认值:EUCLIDEAN)
- `EUCLIDEAN`是欧几里德距离。
- `pre_delete_collection`如果为True,将删除该集合(如果存在)。
(默认值:False)
- 用于测试。"""
[docs] def __init__(
self,
connection_string: str,
embedding_function: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
collection_metadata: Optional[dict] = None,
pre_delete_collection: bool = False,
logger: Optional[logging.Logger] = None,
) -> None:
self.connection_string = connection_string
self.embedding_function = embedding_function
self.collection_name = collection_name
self.collection_metadata = collection_metadata
self.pre_delete_collection = pre_delete_collection
self.logger = logger or logging.getLogger(__name__)
self.__post_init__()
def __post_init__(
self,
) -> None:
self._conn = self.connect()
self.create_hnsw_extension()
self.create_tables_if_not_exists()
self.create_collection()
@property
def embeddings(self) -> Embeddings:
return self.embedding_function
[docs] def connect(self) -> sqlalchemy.engine.Connection:
engine = sqlalchemy.create_engine(self.connection_string)
conn = engine.connect()
return conn
[docs] def create_hnsw_extension(self) -> None:
try:
with Session(self._conn) as session:
statement = sqlalchemy.text("CREATE EXTENSION IF NOT EXISTS embedding")
session.execute(statement)
session.commit()
except Exception as e:
self.logger.exception(e)
[docs] def create_tables_if_not_exists(self) -> None:
with self._conn.begin():
Base.metadata.create_all(self._conn)
[docs] def drop_tables(self) -> None:
with self._conn.begin():
Base.metadata.drop_all(self._conn)
[docs] def create_collection(self) -> None:
if self.pre_delete_collection:
self.delete_collection()
with Session(self._conn) as session:
CollectionStore.get_or_create(
session, self.collection_name, cmetadata=self.collection_metadata
)
[docs] def create_hnsw_index(
self,
max_elements: int = 10000,
dims: int = ADA_TOKEN_COUNT,
m: int = 8,
ef_construction: int = 16,
ef_search: int = 16,
) -> None:
create_index_query = sqlalchemy.text(
"CREATE INDEX IF NOT EXISTS langchain_pg_embedding_idx "
"ON langchain_pg_embedding USING hnsw (embedding) "
"WITH ("
"maxelements = {}, "
"dims = {}, "
"m = {}, "
"efconstruction = {}, "
"efsearch = {}"
");".format(max_elements, dims, m, ef_construction, ef_search)
)
# Execute the queries
try:
with Session(self._conn) as session:
# Create the HNSW index
session.execute(create_index_query)
session.commit()
print("HNSW extension and index created successfully.") # noqa: T201
except Exception as e:
print(f"Failed to create HNSW extension or index: {e}") # noqa: T201
[docs] def delete_collection(self) -> None:
self.logger.debug("Trying to delete collection")
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
self.logger.warning("Collection not found")
return
session.delete(collection)
session.commit()
[docs] def get_collection(self, session: Session) -> Optional["CollectionStore"]:
return CollectionStore.get_by_name(session, self.collection_name)
@classmethod
def _initialize_from_embeddings(
cls,
texts: List[str],
embeddings: List[List[float]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGEmbedding:
if ids is None:
ids = [str(uuid.uuid4()) for _ in texts]
if not metadatas:
metadatas = [{} for _ in texts]
connection_string = cls.get_connection_string(kwargs)
store = cls(
connection_string=connection_string,
collection_name=collection_name,
embedding_function=embedding,
pre_delete_collection=pre_delete_collection,
)
store.add_embeddings(
texts=texts, embeddings=embeddings, metadatas=metadatas, ids=ids, **kwargs
)
return store
[docs] def add_embeddings(
self,
texts: List[str],
embeddings: List[List[float]],
metadatas: List[dict],
ids: List[str],
**kwargs: Any,
) -> None:
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
raise ValueError("Collection not found")
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
embedding_store = EmbeddingStore(
embedding=embedding,
document=text,
cmetadata=metadata,
custom_id=id,
)
collection.embeddings.append(embedding_store)
session.add(embedding_store)
session.commit()
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
if ids is None:
ids = [str(uuid.uuid4()) for _ in texts]
embeddings = self.embedding_function.embed_documents(list(texts))
if not metadatas:
metadatas = [{} for _ in texts]
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
raise ValueError("Collection not found")
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
embedding_store = EmbeddingStore(
embedding=embedding,
document=text,
cmetadata=metadata,
custom_id=id,
)
collection.embeddings.append(embedding_store)
session.add(embedding_store)
session.commit()
return ids
[docs] def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
embedding = self.embedding_function.embed_query(text=query)
return self.similarity_search_by_vector(
embedding=embedding,
k=k,
filter=filter,
)
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
) -> List[Tuple[Document, float]]:
embedding = self.embedding_function.embed_query(query)
docs = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
return docs
[docs] def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[dict] = None,
) -> List[Tuple[Document, float]]:
with Session(self._conn) as session:
collection = self.get_collection(session)
set_enable_seqscan_stmt = sqlalchemy.text("SET enable_seqscan = off")
session.execute(set_enable_seqscan_stmt)
if not collection:
raise ValueError("Collection not found")
filter_by = EmbeddingStore.collection_id == collection.uuid
if filter is not None:
filter_clauses = []
for key, value in filter.items():
IN = "in"
if isinstance(value, dict) and IN in map(str.lower, value):
value_case_insensitive = {
k.lower(): v for k, v in value.items()
}
filter_by_metadata = EmbeddingStore.cmetadata[key].astext.in_(
value_case_insensitive[IN]
)
filter_clauses.append(filter_by_metadata)
elif isinstance(value, dict) and "substring" in map(
str.lower, value
):
filter_by_metadata = EmbeddingStore.cmetadata[key].astext.ilike(
f"%{value['substring']}%"
)
filter_clauses.append(filter_by_metadata)
else:
filter_by_metadata = EmbeddingStore.cmetadata[
key
].astext == str(value)
filter_clauses.append(filter_by_metadata)
filter_by = sqlalchemy.and_(filter_by, *filter_clauses)
results: List[QueryResult] = (
session.query(
EmbeddingStore,
func.abs(EmbeddingStore.embedding.op("<->")(embedding)).label(
"distance"
),
) # Specify the columns you need here, e.g., EmbeddingStore.embedding
.filter(filter_by)
.order_by(
func.abs(EmbeddingStore.embedding.op("<->")(embedding)).asc()
) # Using PostgreSQL specific operator with the correct column name
.limit(k)
.all()
)
docs = [
(
Document(
page_content=result.EmbeddingStore.document, # type: ignore[arg-type]
metadata=result.EmbeddingStore.cmetadata,
),
result.distance if self.embedding_function is not None else 0.0,
)
for result in results
]
return docs
[docs] def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
docs_and_scores = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
return [doc for doc, _ in docs_and_scores]
[docs] @classmethod
def from_texts(
cls: Type[PGEmbedding],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGEmbedding:
embeddings = embedding.embed_documents(list(texts))
return cls._initialize_from_embeddings(
texts,
embeddings,
embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
pre_delete_collection=pre_delete_collection,
**kwargs,
)
[docs] @classmethod
def from_embeddings(
cls,
text_embeddings: List[Tuple[str, List[float]]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGEmbedding:
texts = [t[0] for t in text_embeddings]
embeddings = [t[1] for t in text_embeddings]
return cls._initialize_from_embeddings(
texts,
embeddings,
embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
pre_delete_collection=pre_delete_collection,
**kwargs,
)
[docs] @classmethod
def from_existing_index(
cls: Type[PGEmbedding],
embedding: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGEmbedding:
connection_string = cls.get_connection_string(kwargs)
store = cls(
connection_string=connection_string,
collection_name=collection_name,
embedding_function=embedding,
pre_delete_collection=pre_delete_collection,
)
return store
[docs] @classmethod
def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
connection_string: str = get_from_dict_or_env(
data=kwargs,
key="connection_string",
env_key="POSTGRES_CONNECTION_STRING",
)
if not connection_string:
raise ValueError(
"Postgres connection string is required"
"Either pass it as a parameter"
"or set the POSTGRES_CONNECTION_STRING environment variable."
)
return connection_string
[docs] @classmethod
def from_documents(
cls: Type[PGEmbedding],
documents: List[Document],
embedding: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> PGEmbedding:
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
connection_string = cls.get_connection_string(kwargs)
kwargs["connection_string"] = connection_string
return cls.from_texts(
texts=texts,
pre_delete_collection=pre_delete_collection,
embedding=embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
**kwargs,
)