跳至内容

Pandas

Pandas查询引擎 #

基类: BaseQueryEngine

Pandas查询引擎。

将自然语言转换为Pandas Python代码。

警告:此工具为智能体提供了访问eval函数的能力。 在运行此工具的机器上可能执行任意代码。 不建议在生产环境中使用此工具,若必须使用需要严格沙箱隔离或虚拟机保护

参数:

名称 类型 描述 默认值
df DataFrame

要使用的Pandas数据框。

required
instruction_str Optional[str]

要使用的指令字符串。

None
instruction_parser Optional[PandasInstructionParser]

输出解析器 用于处理pandas查询输出字符串并返回字符串。 默认使用PandasInstructionParser,接收pandas DataFrame 以及任意输出kwargs作为参数。 例如kwargs["max_colwidth"] = [int]用于设置str(df)时 每列可显示的文本长度。如果数据框中可能存在长文本, 请将此值设置为更大的数字。

None
pandas_prompt Optional[BasePromptTemplate]

要使用的Pandas提示。

None
output_kwargs dict

PandasInstructionParser 的额外输出处理器参数。

None
head int

表格上下文中显示的行数。

5
verbose bool

是否打印详细输出。

False
llm Optional[LLM]

要使用的语言模型。

None
synthesize_response bool

是否根据查询结果合成响应。默认为 False。

False
response_synthesis_prompt Optional[BasePromptTemplate]

用于查询的响应合成基础提示模板。默认为DEFAULT_RESPONSE_SYNTHESIS_PROMPT。

None

示例:

pip install llama-index-experimental

import pandas as pd
from llama_index.experimental.query_engine.pandas import PandasQueryEngine

df = pd.DataFrame(
    {
        "city": ["Toronto", "Tokyo", "Berlin"],
        "population": [2930000, 13960000, 3645000]
    }
)

query_engine = PandasQueryEngine(df=df, verbose=True)

response = query_engine.query("What is the population of Tokyo?")
Source code in llama-index-experimental/llama_index/experimental/query_engine/pandas/pandas_query_engine.py
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
class PandasQueryEngine(BaseQueryEngine):
    """
    Pandas query engine.

    Convert natural language to Pandas python code.

    WARNING: This tool provides the Agent access to the `eval` function.
    Arbitrary code execution is possible on the machine running this tool.
    This tool is not recommended to be used in a production setting, and would
    require heavy sandboxing or virtual machines


    Args:
        df (pd.DataFrame): Pandas dataframe to use.
        instruction_str (Optional[str]): Instruction string to use.
        instruction_parser (Optional[PandasInstructionParser]): The output parser
            that takes the pandas query output string and returns a string.
            It defaults to PandasInstructionParser and takes pandas DataFrame,
            and any output kwargs as parameters.
            eg.kwargs["max_colwidth"] = [int] is used to set the length of text
            that each column can display during str(df). Set it to a higher number
            if there is possibly long text in the dataframe.
        pandas_prompt (Optional[BasePromptTemplate]): Pandas prompt to use.
        output_kwargs (dict): Additional output processor kwargs for the
            PandasInstructionParser.
        head (int): Number of rows to show in the table context.
        verbose (bool): Whether to print verbose output.
        llm (Optional[LLM]): Language model to use.
        synthesize_response (bool): Whether to synthesize a response from the
            query results. Defaults to False.
        response_synthesis_prompt (Optional[BasePromptTemplate]): A
            Response Synthesis BasePromptTemplate to use for the query. Defaults to
            DEFAULT_RESPONSE_SYNTHESIS_PROMPT.

    Examples:
        `pip install llama-index-experimental`

        ```python
        import pandas as pd
        from llama_index.experimental.query_engine.pandas import PandasQueryEngine

        df = pd.DataFrame(
            {
                "city": ["Toronto", "Tokyo", "Berlin"],
                "population": [2930000, 13960000, 3645000]
            }
        )

        query_engine = PandasQueryEngine(df=df, verbose=True)

        response = query_engine.query("What is the population of Tokyo?")
        ```

    """

    def __init__(
        self,
        df: pd.DataFrame,
        instruction_str: Optional[str] = None,
        instruction_parser: Optional[PandasInstructionParser] = None,
        pandas_prompt: Optional[BasePromptTemplate] = None,
        output_kwargs: Optional[dict] = None,
        head: int = 5,
        verbose: bool = False,
        llm: Optional[LLM] = None,
        synthesize_response: bool = False,
        response_synthesis_prompt: Optional[BasePromptTemplate] = None,
        **kwargs: Any,
    ) -> None:
        """Initialize params."""
        self._df = df

        self._head = head
        self._pandas_prompt = pandas_prompt or DEFAULT_PANDAS_PROMPT
        self._instruction_str = instruction_str or DEFAULT_INSTRUCTION_STR
        self._instruction_parser = instruction_parser or PandasInstructionParser(
            df, output_kwargs or {}
        )
        self._verbose = verbose

        self._llm = llm or Settings.llm
        self._synthesize_response = synthesize_response
        self._response_synthesis_prompt = (
            response_synthesis_prompt or DEFAULT_RESPONSE_SYNTHESIS_PROMPT
        )

        super().__init__(callback_manager=Settings.callback_manager)

    def _get_prompt_modules(self) -> PromptMixinType:
        """Get prompt sub-modules."""
        return {}

    def _get_prompts(self) -> Dict[str, Any]:
        """Get prompts."""
        return {
            "pandas_prompt": self._pandas_prompt,
            "response_synthesis_prompt": self._response_synthesis_prompt,
        }

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """Update prompts."""
        if "pandas_prompt" in prompts:
            self._pandas_prompt = prompts["pandas_prompt"]
        if "response_synthesis_prompt" in prompts:
            self._response_synthesis_prompt = prompts["response_synthesis_prompt"]

    @classmethod
    def from_index(cls, index: PandasIndex, **kwargs: Any) -> "PandasQueryEngine":
        logger.warning(
            "PandasIndex is deprecated. "
            "Directly construct PandasQueryEngine with df instead."
        )
        return cls(df=index.df, **kwargs)

    def _get_table_context(self) -> str:
        """Get table context."""
        return str(self._df.head(self._head))

    def _query(self, query_bundle: QueryBundle) -> Response:
        """Answer a query."""
        context = self._get_table_context()

        pandas_response_str = self._llm.predict(
            self._pandas_prompt,
            df_str=context,
            query_str=query_bundle.query_str,
            instruction_str=self._instruction_str,
        )

        if self._verbose:
            print_text(f"> Pandas Instructions:\n```\n{pandas_response_str}\n```\n")
        pandas_output = self._instruction_parser.parse(pandas_response_str)
        if self._verbose:
            print_text(f"> Pandas Output: {pandas_output}\n")

        response_metadata = {
            "pandas_instruction_str": pandas_response_str,
            "raw_pandas_output": pandas_output,
        }
        if self._synthesize_response:
            response_str = str(
                self._llm.predict(
                    self._response_synthesis_prompt,
                    query_str=query_bundle.query_str,
                    pandas_instructions=pandas_response_str,
                    pandas_output=pandas_output,
                )
            )
        else:
            response_str = str(pandas_output)

        return Response(response=response_str, metadata=response_metadata)

    async def _aquery(self, query_bundle: QueryBundle) -> Response:
        return self._query(query_bundle)