Skip to content

Singlestoredb

SingleStoreVectorStore #

Bases: BasePydanticVectorStore

单存储向量存储。

该向量存储将嵌入存储在SingleStore数据库表中。

在查询时,索引使用SingleStore查询前k个最相似的节点。

示例: pip install llama-index-vector-stores-singlestoredb

```python
from llama_index.vector_stores.singlestoredb import SingleStoreVectorStore
import os

# 可以在环境中设置单存储数据库的URL
# 或将其作为参数传递给SingleStoreVectorStore构造函数
os.environ["SINGLESTOREDB_URL"] = "占位符URL"
vector_store = SingleStoreVectorStore(
    table_name="embeddings",
    content_field="content",
    metadata_field="metadata",
    vector_field="vector",
    timeout=30,
)
```
Source code in llama_index/vector_stores/singlestoredb/base.py
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
class SingleStoreVectorStore(BasePydanticVectorStore):
    """单存储向量存储。

    该向量存储将嵌入存储在SingleStore数据库表中。

    在查询时,索引使用SingleStore查询前k个最相似的节点。

    Args:
        table_name(str,可选):指定正在使用的表的名称。默认为"embeddings"。
        content_field(str,可选):指定存储内容的字段。默认为"content"。
        metadata_field(str,可选):指定存储元数据的字段。默认为"metadata"。
        vector_field(str,可选):指定存储向量的字段。默认为"vector"。

        以下参数与连接池有关:

        pool_size(int,可选):确定池中活动连接的数量。默认为5。
        max_overflow(int,可选):确定允许超出pool_size的最大连接数。默认为10。
        timeout(float,可选):指定建立连接的最大等待时间(秒)。默认为30。

        以下参数与连接有关:

        host(str,可选):指定数据库连接的主机名、IP地址或URL。默认方案为"mysql"。
        user(str,可选):数据库用户名。
        password(str,可选):数据库密码。
        port(int,可选):数据库端口。对于非HTTP连接,默认为3306,对于HTTP连接,默认为80,对于HTTPS连接,默认为443。
        database(str,可选):数据库名称。

    示例:
        `pip install llama-index-vector-stores-singlestoredb`

        ```python
        from llama_index.vector_stores.singlestoredb import SingleStoreVectorStore
        import os

        # 可以在环境中设置单存储数据库的URL
        # 或将其作为参数传递给SingleStoreVectorStore构造函数
        os.environ["SINGLESTOREDB_URL"] = "占位符URL"
        vector_store = SingleStoreVectorStore(
            table_name="embeddings",
            content_field="content",
            metadata_field="metadata",
            vector_field="vector",
            timeout=30,
        )
        ```"""

    stores_text: bool = True
    flat_metadata: bool = True

    table_name: str
    content_field: str
    metadata_field: str
    vector_field: str
    pool_size: int
    max_overflow: int
    timeout: float
    connection_kwargs: dict
    connection_pool: QueuePool

    def __init__(
        self,
        table_name: str = "embeddings",
        content_field: str = "content",
        metadata_field: str = "metadata",
        vector_field: str = "vector",
        pool_size: int = 5,
        max_overflow: int = 10,
        timeout: float = 30,
        **kwargs: Any,
    ) -> None:
        """初始化参数。"""
        super().__init__(
            table_name=table_name,
            content_field=content_field,
            metadata_field=metadata_field,
            vector_field=vector_field,
            pool_size=pool_size,
            max_overflow=max_overflow,
            timeout=timeout,
            connection_kwargs=kwargs,
            connection_pool=QueuePool(
                self._get_connection,
                pool_size=pool_size,
                max_overflow=max_overflow,
                timeout=timeout,
            ),
        )

        self._create_table()

    @property
    def client(self) -> Any:
        """返回SingleStoreDB客户端。"""
        return self._get_connection()

    @classmethod
    def class_name(cls) -> str:
        return "SingleStoreVectorStore"

    def _get_connection(self) -> Any:
        return s2.connect(**self.connection_kwargs)

    def _create_table(self) -> None:
        conn = self.connection_pool.connect()
        try:
            cur = conn.cursor()
            try:
                cur.execute(
                    f"""CREATE TABLE IF NOT EXISTS {self.table_name}
                    ({self.content_field} TEXT CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci,
                    {self.vector_field} BLOB, {self.metadata_field} JSON);"""
                )
            finally:
                cur.close()
        finally:
            conn.close()

    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        """将节点添加到索引中。

Args:
    节点: List[BaseNode]: 带有嵌入的节点列表
"""
        conn = self.connection_pool.connect()
        cursor = conn.cursor()
        try:
            for node in nodes:
                embedding = node.get_embedding()
                metadata = node_to_metadata_dict(
                    node, remove_text=True, flat_metadata=self.flat_metadata
                )
                cursor.execute(
                    "INSERT INTO {} VALUES (%s, JSON_ARRAY_PACK(%s), %s)".format(
                        self.table_name
                    ),
                    (
                        node.get_content(metadata_mode=MetadataMode.NONE) or "",
                        "[{}]".format(",".join(map(str, embedding))),
                        json.dumps(metadata),
                    ),
                )
        finally:
            cursor.close()
            conn.close()
        return [node.node_id for node in nodes]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """使用ref_doc_id删除节点。

Args:
    ref_doc_id(str):要删除的文档的doc_id。
"""
        conn = self.connection_pool.connect()
        cursor = conn.cursor()
        try:
            cursor.execute(
                f"DELETE FROM {self.table_name} WHERE JSON_EXTRACT_JSON(metadata, 'ref_doc_id') = %s",
                ('"' + ref_doc_id + '"',),
            )
        finally:
            cursor.close()
            conn.close()

    def query(
        self, query: VectorStoreQuery, filter: Optional[dict] = None, **kwargs: Any
    ) -> VectorStoreQueryResult:
        """查询前k个最相似节点的索引。

Args:
    query(VectorStoreQuery):包含query_embedding和similarity_top_k属性。
    filter(Optional[dict]):要过滤的元数据字段和值的字典。默认为None。

Returns:
    VectorStoreQueryResult:包含nodes、similarities和ids属性。
"""
        query_embedding = query.query_embedding
        similarity_top_k = query.similarity_top_k
        conn = self.connection_pool.connect()
        where_clause: str = ""
        where_clause_values: List[Any] = []

        if filter:
            where_clause = "WHERE "
            arguments = []

            def build_where_clause(
                where_clause_values: List[Any],
                sub_filter: dict,
                prefix_args: Optional[List[str]] = None,
            ) -> None:
                prefix_args = prefix_args or []
                for key in sub_filter:
                    if isinstance(sub_filter[key], dict):
                        build_where_clause(
                            where_clause_values, sub_filter[key], [*prefix_args, key]
                        )
                    else:
                        arguments.append(
                            "JSON_EXTRACT({}, {}) = %s".format(
                                {self.metadata_field},
                                ", ".join(["%s"] * (len(prefix_args) + 1)),
                            )
                        )
                        where_clause_values += [*prefix_args, key]
                        where_clause_values.append(json.dumps(sub_filter[key]))

            build_where_clause(where_clause_values, filter)
            where_clause += " AND ".join(arguments)

        results: Sequence[Any] = []
        if query_embedding:
            try:
                cur = conn.cursor()
                formatted_vector = "[{}]".format(",".join(map(str, query_embedding)))
                try:
                    logger.debug("vector field: %s", formatted_vector)
                    logger.debug("similarity_top_k: %s", similarity_top_k)
                    cur.execute(
                        f"SELECT {self.content_field}, {self.metadata_field}, "
                        f"DOT_PRODUCT({self.vector_field}, "
                        "JSON_ARRAY_PACK(%s)) as similarity_score "
                        f"FROM {self.table_name} {where_clause} "
                        f"ORDER BY similarity_score DESC LIMIT {similarity_top_k}",
                        (formatted_vector, *tuple(where_clause_values)),
                    )
                    results = cur.fetchall()
                finally:
                    cur.close()
            finally:
                conn.close()

        nodes = []
        similarities = []
        ids = []
        for result in results:
            text, metadata, similarity_score = result
            node = metadata_dict_to_node(metadata)
            node.set_content(text)
            nodes.append(node)
            similarities.append(similarity_score)
            ids.append(node.node_id)

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

client property #

client: Any

返回SingleStoreDB客户端。

add #

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

将节点添加到索引中。

Parameters:

Name Type Description Default
节点

List[BaseNode]: 带有嵌入的节点列表

required
Source code in llama_index/vector_stores/singlestoredb/base.py
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        """将节点添加到索引中。

Args:
    节点: List[BaseNode]: 带有嵌入的节点列表
"""
        conn = self.connection_pool.connect()
        cursor = conn.cursor()
        try:
            for node in nodes:
                embedding = node.get_embedding()
                metadata = node_to_metadata_dict(
                    node, remove_text=True, flat_metadata=self.flat_metadata
                )
                cursor.execute(
                    "INSERT INTO {} VALUES (%s, JSON_ARRAY_PACK(%s), %s)".format(
                        self.table_name
                    ),
                    (
                        node.get_content(metadata_mode=MetadataMode.NONE) or "",
                        "[{}]".format(",".join(map(str, embedding))),
                        json.dumps(metadata),
                    ),
                )
        finally:
            cursor.close()
            conn.close()
        return [node.node_id for node in nodes]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

使用ref_doc_id删除节点。

Source code in llama_index/vector_stores/singlestoredb/base.py
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """使用ref_doc_id删除节点。

Args:
    ref_doc_id(str):要删除的文档的doc_id。
"""
        conn = self.connection_pool.connect()
        cursor = conn.cursor()
        try:
            cursor.execute(
                f"DELETE FROM {self.table_name} WHERE JSON_EXTRACT_JSON(metadata, 'ref_doc_id') = %s",
                ('"' + ref_doc_id + '"',),
            )
        finally:
            cursor.close()
            conn.close()

query #

query(
    query: VectorStoreQuery,
    filter: Optional[dict] = None,
    **kwargs: Any
) -> VectorStoreQueryResult

查询前k个最相似节点的索引。

Returns:

Type Description
VectorStoreQueryResult

VectorStoreQueryResult:包含nodes、similarities和ids属性。

Source code in llama_index/vector_stores/singlestoredb/base.py
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    def query(
        self, query: VectorStoreQuery, filter: Optional[dict] = None, **kwargs: Any
    ) -> VectorStoreQueryResult:
        """查询前k个最相似节点的索引。

Args:
    query(VectorStoreQuery):包含query_embedding和similarity_top_k属性。
    filter(Optional[dict]):要过滤的元数据字段和值的字典。默认为None。

Returns:
    VectorStoreQueryResult:包含nodes、similarities和ids属性。
"""
        query_embedding = query.query_embedding
        similarity_top_k = query.similarity_top_k
        conn = self.connection_pool.connect()
        where_clause: str = ""
        where_clause_values: List[Any] = []

        if filter:
            where_clause = "WHERE "
            arguments = []

            def build_where_clause(
                where_clause_values: List[Any],
                sub_filter: dict,
                prefix_args: Optional[List[str]] = None,
            ) -> None:
                prefix_args = prefix_args or []
                for key in sub_filter:
                    if isinstance(sub_filter[key], dict):
                        build_where_clause(
                            where_clause_values, sub_filter[key], [*prefix_args, key]
                        )
                    else:
                        arguments.append(
                            "JSON_EXTRACT({}, {}) = %s".format(
                                {self.metadata_field},
                                ", ".join(["%s"] * (len(prefix_args) + 1)),
                            )
                        )
                        where_clause_values += [*prefix_args, key]
                        where_clause_values.append(json.dumps(sub_filter[key]))

            build_where_clause(where_clause_values, filter)
            where_clause += " AND ".join(arguments)

        results: Sequence[Any] = []
        if query_embedding:
            try:
                cur = conn.cursor()
                formatted_vector = "[{}]".format(",".join(map(str, query_embedding)))
                try:
                    logger.debug("vector field: %s", formatted_vector)
                    logger.debug("similarity_top_k: %s", similarity_top_k)
                    cur.execute(
                        f"SELECT {self.content_field}, {self.metadata_field}, "
                        f"DOT_PRODUCT({self.vector_field}, "
                        "JSON_ARRAY_PACK(%s)) as similarity_score "
                        f"FROM {self.table_name} {where_clause} "
                        f"ORDER BY similarity_score DESC LIMIT {similarity_top_k}",
                        (formatted_vector, *tuple(where_clause_values)),
                    )
                    results = cur.fetchall()
                finally:
                    cur.close()
            finally:
                conn.close()

        nodes = []
        similarities = []
        ids = []
        for result in results:
            text, metadata, similarity_score = result
            node = metadata_dict_to_node(metadata)
            node.set_content(text)
            nodes.append(node)
            similarities.append(similarity_score)
            ids.append(node.node_id)

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)