主体 - 嵌套模型¶
通过 FastAPI,你可以定义、验证、记录和使用任意深度的嵌套模型(得益于 Pydantic)。
列表字段¶
你可以将一个属性定义为子类型。例如,一个 Python 的 list
:
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: str | None = None
price: float
tax: float | None = None
tags: list = []
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import Union
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: list = []
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
这将使 tags
成为一个列表,尽管它没有声明列表元素的类型。
带有类型参数的列表字段¶
但 Python 有一种特定的声明带有内部类型的列表的方式,或称为“类型参数”:
导入 typing
的 List
¶
在 Python 3.9 及以上版本中,你可以使用标准的 list
来声明这些类型注解,如下所示。💡
但在 Python 3.9 之前的版本(3.6 及以上),你需要首先从标准 Python 的 typing
模块中导入 List
:
from typing import List, Union
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: List[str] = []
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
声明带有类型参数的 list
¶
要声明带有类型参数(内部类型)的类型,如 list
、dict
、tuple
:
- 如果你使用的是低于 3.9 的 Python 版本,从
typing
模块中导入它们的等效版本 - 使用方括号
[
和]
传递内部类型作为“类型参数”
在 Python 3.9 中,它会是:
my_list: list[str]
在 Python 3.9 之前的版本中,它会是:
from typing import List
my_list: List[str]
这是标准 Python 语法用于类型声明的全部内容。
对具有内部类型的模型属性使用相同的标准语法。
因此,在我们的例子中,我们可以使 tags
具体为“字符串列表”:
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: str | None = None
price: float
tax: float | None = None
tags: list[str] = []
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import Union
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: list[str] = []
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import List, Union
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: List[str] = []
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
集合类型¶
但随后我们思考了一下,意识到标签不应该重复,它们可能是唯一的字符串。
Python 有一个特殊的数据类型用于唯一项的集合,即 set
。
然后我们可以将 tags
声明为字符串的集合:
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: str | None = None
price: float
tax: float | None = None
tags: set[str] = set()
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import Union
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: set[str] = set()
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import Set, Union
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: Set[str] = set()
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
通过这种方式,即使你收到带有重复数据的请求,它也会被转换为一组唯一的项。
并且无论何时输出该数据,即使源数据中有重复项,它也会作为一组唯一的项输出。
并且它也会相应地被注解/记录。
嵌套模型¶
Pydantic 模型的每个属性都有一个类型。
但该类型本身可以是另一个 Pydantic 模型。
因此,你可以声明具有特定属性名称、类型和验证的深度嵌套 JSON“对象”。
所有这些,可以任意嵌套。
定义子模型¶
例如,我们可以定义一个 Image
模型:
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Image(BaseModel):
url: str
name: str
class Item(BaseModel):
name: str
description: str | None = None
price: float
tax: float | None = None
tags: set[str] = set()
image: Image | None = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import Union
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Image(BaseModel):
url: str
name: str
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: set[str] = set()
image: Union[Image, None] = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import Set, Union
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Image(BaseModel):
url: str
name: str
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: Set[str] = set()
image: Union[Image, None] = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
使用子模型作为类型¶
然后我们可以将其用作属性的类型:
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Image(BaseModel):
url: str
name: str
class Item(BaseModel):
name: str
description: str | None = None
price: float
tax: float | None = None
tags: set[str] = set()
image: Image | None = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import Union
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Image(BaseModel):
url: str
name: str
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: set[str] = set()
image: Union[Image, None] = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import Set, Union
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class Image(BaseModel):
url: str
name: str
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: Set[str] = set()
image: Union[Image, None] = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
这意味着 FastAPI 将期望一个类似于以下的请求体:
{
"name": "Foo",
"description": "The pretender",
"price": 42.0,
"tax": 3.2,
"tags": ["rock", "metal", "bar"],
"image": {
"url": "http://example.com/baz.jpg",
"name": "The Foo live"
}
}
再次强调,只需进行该声明,使用 FastAPI 你将获得:
- 编辑器支持(自动补全等),即使是嵌套模型
- 数据转换
- 数据验证
- 自动文档生成
特殊类型和验证¶
除了像 str
、int
、float
等普通单一类型外,你还可以使用继承自 str
的更复杂的单一类型。
要查看您拥有的所有选项,请查看 Pydantic 的类型概述。您将在下一章中看到一些示例。
例如,在 Image
模型中,我们有一个 url
字段,我们可以将其声明为 Pydantic 的 HttpUrl
实例,而不是 str
:
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
app = FastAPI()
class Image(BaseModel):
url: HttpUrl
name: str
class Item(BaseModel):
name: str
description: str | None = None
price: float
tax: float | None = None
tags: set[str] = set()
image: Image | None = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import Union
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
app = FastAPI()
class Image(BaseModel):
url: HttpUrl
name: str
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: set[str] = set()
image: Union[Image, None] = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import Set, Union
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
app = FastAPI()
class Image(BaseModel):
url: HttpUrl
name: str
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: Set[str] = set()
image: Union[Image, None] = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
该字符串将被检查为有效的 URL,并在 JSON Schema / OpenAPI 中作为 URL 进行记录。
带有子模型列表的属性¶
您还可以将 Pydantic 模型用作 list
、set
等的子类型:
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
app = FastAPI()
class Image(BaseModel):
url: HttpUrl
name: str
class Item(BaseModel):
name: str
description: str | None = None
price: float
tax: float | None = None
tags: set[str] = set()
images: list[Image] | None = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import Union
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
app = FastAPI()
class Image(BaseModel):
url: HttpUrl
name: str
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: set[str] = set()
images: Union[list[Image], None] = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
from typing import List, Set, Union
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
app = FastAPI()
class Image(BaseModel):
url: HttpUrl
name: str
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: Set[str] = set()
images: Union[List[Image], None] = None
@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
results = {"item_id": item_id, "item": item}
return results
这将期望(转换、验证、记录等)一个类似如下的 JSON 主体:
{
"name": "Foo",
"description": "The pretender",
"price": 42.0,
"tax": 3.2,
"tags": [
"rock",
"metal",
"bar"
],
"images": [
{
"url": "http://example.com/baz.jpg",
"name": "The Foo live"
},
{
"url": "http://example.com/dave.jpg",
"name": "The Baz"
}
]
}
Info
注意 images
键现在包含一个图像对象列表。
深度嵌套模型¶
您可以定义任意深度的嵌套模型:
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
app = FastAPI()
class Image(BaseModel):
url: HttpUrl
name: str
class Item(BaseModel):
name: str
description: str | None = None
price: float
tax: float | None = None
tags: set[str] = set()
images: list[Image] | None = None
class Offer(BaseModel):
name: str
description: str | None = None
price: float
items: list[Item]
@app.post("/offers/")
async def create_offer(offer: Offer):
return offer
from typing import Union
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
app = FastAPI()
class Image(BaseModel):
url: HttpUrl
name: str
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: set[str] = set()
images: Union[list[Image], None] = None
class Offer(BaseModel):
name: str
description: Union[str, None] = None
price: float
items: list[Item]
@app.post("/offers/")
async def create_offer(offer: Offer):
return offer
from typing import List, Set, Union
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
app = FastAPI()
class Image(BaseModel):
url: HttpUrl
name: str
class Item(BaseModel):
name: str
description: Union[str, None] = None
price: float
tax: Union[float, None] = None
tags: Set[str] = set()
images: Union[List[Image], None] = None
class Offer(BaseModel):
name: str
description: Union[str, None] = None
price: float
items: List[Item]
@app.post("/offers/")
async def create_offer(offer: Offer):
return offer
Info
注意 Offer
有一个 Item
列表,而 Item
又有一个可选的 Image
列表。
纯列表的主体¶
如果您期望的 JSON 主体的顶层值是一个 JSON array
(一个 Python list
),您可以在函数的参数中声明类型,就像在 Pydantic 模型中一样:
images: List[Image]
或在 Python 3.9 及以上版本中:
images: list[Image]
例如:
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
app = FastAPI()
class Image(BaseModel):
url: HttpUrl
name: str
@app.post("/images/multiple/")
async def create_multiple_images(images: list[Image]):
return images
from typing import List
from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl
app = FastAPI()
class Image(BaseModel):
url: HttpUrl
name: str
@app.post("/images/multiple/")
async def create_multiple_images(images: List[Image]):
return images
无处不在的编辑器支持¶
您可以在任何地方获得编辑器支持。
即使是列表中的项目:
如果您直接使用 dict
而不是 Pydantic 模型,您无法获得这种编辑器支持。
但您也不必担心这些,传入的 dict
会自动转换,您的输出也会自动转换为 JSON。
任意 dict
的主体¶
您还可以将主体声明为具有某种类型键和另一种类型值的 dict
。
这样,您不必事先知道有效的字段/属性名称(就像使用 Pydantic 模型时那样)。
如果您想要接收您事先不知道的键,这将非常有用。
另一个有用的场景是当您希望键是另一种类型(例如,int
)时。
这就是我们在这里要看到的。
在这种情况下,您将接受任何 dict
,只要它具有 int
键和 float
值:
from fastapi import FastAPI
app = FastAPI()
@app.post("/index-weights/")
async def create_index_weights(weights: dict[int, float]):
return weights
from typing import Dict
from fastapi import FastAPI
app = FastAPI()
@app.post("/index-weights/")
async def create_index_weights(weights: Dict[int, float]):
return weights
Tip
请记住,JSON 仅支持 str
作为键。
但 Pydantic 具有自动数据转换功能。
这意味着,即使您的 API 客户端只能发送字符串作为键,只要这些字符串包含纯整数,Pydantic 就会将它们转换并验证。
而您接收到的 weights
作为 dict
实际上将具有 int
键和 float
值。
总结¶
通过 FastAPI,您可以获得 Pydantic 模型提供的最大灵活性,同时保持代码简洁、简短和优雅。
但同时享有所有好处:
- 编辑器支持(无处不在的自动补全!)
- 数据转换(又称解析/序列化)
- 数据验证
- 模式文档
- 自动文档