featuretools.primitives.ExpandingMin#
- class featuretools.primitives.ExpandingMin(gap=1, min_periods=1)[source]#
计算给定窗口内事件的扩展最小值.
- Description:
给定一个日期时间列表,返回从当前行开始,距离当前行 gap 行之外的扩展最小值. 扩展原语计算在给定时间点的原语值,使用所有可用的数据,直到相应的时间点.
输入的日期时间应为单调递增.
- Parameters:
gap (int, 可选) – 指定在可用数据开始之前,从每个实例向后跳过的间隔.对应于行数.默认为 1.
min_periods (int, 可选) – 执行计算所需的最小观测数.默认为 1.
Examples
>>> import pandas as pd >>> expanding_min = ExpandingMin() >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> expanding_min(times, [5, 4, 3, 2, 1]).tolist() [nan, 5.0, 4.0, 3.0, 2.0]
我们也可以控制扩展计算前的间隔.
>>> import pandas as pd >>> expanding_min = ExpandingMin(gap=0) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> expanding_min(times, [5, 4, 3, 2, 1]).tolist() [5.0, 4.0, 3.0, 2.0, 1.0]
我们还可以控制滚动计算所需的最小周期数.
>>> import pandas as pd >>> expanding_min = ExpandingMin(min_periods=3) >>> times = pd.date_range(start='2019-01-01', freq='1min', periods=5) >>> expanding_min(times, [5, 4, 3, 2, 1]).tolist() [nan, nan, nan, 3.0, 2.0]
Methods
__init__([gap, min_periods])flatten_nested_input_types(input_types)将嵌套的列模式输入展平成一个列表.
generate_name(base_feature_names)generate_names(base_feature_names)get_args_string()get_arguments()get_description(input_column_descriptions[, ...])get_filepath(filename)get_function()Attributes
base_ofbase_of_excludecommutativedefault_valueDefault value this feature returns if no data found.
description_templateinput_typeswoodwork.ColumnSchema types of inputs
max_stack_depthnameName of the primitive
number_output_featuresNumber of columns in feature matrix associated with this feature
return_typeColumnSchema type of return
stack_onstack_on_excludestack_on_selfuses_calc_timeuses_full_dataframe