Keras 2 API 文档 / 混合精度 / 混合精度策略 API

混合精度策略 API

[source]

Policy class

tf_keras.mixed_precision.Policy(name)

A dtype policy for a TF-Keras layer.

A dtype policy determines a layer's computation and variable dtypes. Each layer has a policy. Policies can be passed to the dtype argument of layer constructors, or a global policy can be set with tf.keras.mixed_precision.set_global_policy.

Arguments

  • name: The policy name, which determines the compute and variable dtypes. Can be any dtype name, such as 'float32' or 'float64', which causes both the compute and variable dtypes will be that dtype. Can also be the string 'mixed_float16' or 'mixed_bfloat16', which causes the compute dtype to be float16 or bfloat16 and the variable dtype to be float32.

Typically you only need to interact with dtype policies when using mixed precision, which is the use of float16 or bfloat16 for computations and float32 for variables. This is why the term mixed_precision appears in the API name. Mixed precision can be enabled by passing 'mixed_float16' or 'mixed_bfloat16' to tf.keras.mixed_precision.set_global_policy. See the mixed precision guide for more information on how to use mixed precision.

>>> tf.keras.mixed_precision.set_global_policy('mixed_float16')
>>> layer1 = tf.keras.layers.Dense(10)
>>> layer1.dtype_policy  # `layer1` will automatically use mixed precision
<Policy "mixed_float16">
>>> # Can optionally override layer to use float32
>>> # instead of mixed precision.
>>> layer2 = tf.keras.layers.Dense(10, dtype='float32')
>>> layer2.dtype_policy
<Policy "float32">
>>> # Set policy back to initial float32 for future examples.
>>> tf.keras.mixed_precision.set_global_policy('float32')

In the example above, passing dtype='float32' to the layer is equivalent to passing dtype=tf.keras.mixed_precision.Policy('float32'). In general, passing a dtype policy name to a layer is equivalent to passing the corresponding policy, so it is never necessary to explicitly construct a Policy object.

Note: Model.compile will automatically wrap an optimizer with a tf.keras.mixed_precision.LossScaleOptimizer if you use the 'mixed_float16' policy. If you use a custom training loop instead of calling Model.compile, you should explicitly use a tf.keras.mixed_precision.LossScaleOptimizer to avoid numeric underflow with float16.

How a layer uses its policy's compute dtype

A layer casts its inputs to its compute dtype. This causes the layer's computations and output to also be in the compute dtype. For example:

>>> x = tf.ones((4, 4, 4, 4), dtype='float64')
>>> # `layer`'s policy defaults to float32.
>>> layer = tf.keras.layers.Conv2D(filters=4, kernel_size=2)
>>> layer.compute_dtype  # Equivalent to layer.dtype_policy.compute_dtype
'float32'
>>> # `layer` casts its inputs to its compute dtype and does computations in
>>> # that dtype.
>>> y = layer(x)
>>> y.dtype
tf.float32

Note that the base tf.keras.layers.Layer class inserts the casts. If subclassing your own layer, you do not have to insert any casts.

Currently, only tensors in the first argument to the layer's call method are casted (although this will likely be changed in a future minor release). For example:

>>> class MyLayer(tf.keras.layers.Layer):
...   # Bug! `b` will not be casted.
...   def call(self, a, b):
...     return a + 1., b + 1.
>>> a = tf.constant(1., dtype="float32")
>>> b = tf.constant(1., dtype="float32")
>>> layer = MyLayer(dtype="float64")
>>> x, y = layer(a, b)
>>> x.dtype
tf.float64
>>> y.dtype
tf.float32

If writing your own layer with multiple inputs, you should either explicitly cast other tensors to self.compute_dtype in call or accept all tensors in the first argument as a list.

The casting only occurs in TensorFlow 2. If tf.compat.v1.disable_v2_behavior() has been called, you can enable the casting behavior with tf.compat.v1.keras.layers.enable_v2_dtype_behavior().

How a layer uses its policy's variable dtype

The default dtype of variables created by tf.keras.layers.Layer.add_weight is the layer's policy's variable dtype.

If a layer's compute and variable dtypes differ, add_weight will wrap floating-point variables with a special wrapper called an AutoCastVariable. AutoCastVariable is identical to the original variable except it casts itself to the layer's compute dtype when used within Layer.call. This means if you are writing a layer, you do not have to explicitly cast the variables to the layer's compute dtype. For example:

>>> class SimpleDense(tf.keras.layers.Layer):
...
...   def build(self, input_shape):
...     # With mixed precision, self.kernel is a float32 AutoCastVariable
...     self.kernel = self.add_weight('kernel', (input_shape[-1], 10))
...
...   def call(self, inputs):
...     # With mixed precision, self.kernel will be casted to float16
...     return tf.linalg.matmul(inputs, self.kernel)
...
>>> layer = SimpleDense(dtype='mixed_float16')
>>> y = layer(tf.ones((10, 10)))
>>> y.dtype
tf.float16
>>> layer.kernel.dtype
tf.float32

A layer author can prevent a variable from being wrapped with an AutoCastVariable by passing experimental_autocast=False to add_weight, which is useful if the float32 value of the variable must be accessed within the layer.

How to write a layer that supports mixed precision and float64.

For the most part, layers will automatically support mixed precision and float64 without any additional work, due to the fact the base layer automatically casts inputs, creates variables of the correct type, and in the case of mixed precision, wraps variables with AutoCastVariables.

The primary case where you need extra work to support mixed precision or float64 is when you create a new tensor, such as with tf.ones or tf.random.normal, In such cases, you must create the tensor of the correct dtype. For example, if you call tf.random.normal, you must pass the compute dtype, which is the dtype the inputs have been casted to:

>>> class AddRandom(tf.keras.layers.Layer):
...
...   def call(self, inputs):
...     # We must pass `dtype=inputs.dtype`, otherwise a TypeError may
...     # occur when adding `inputs` to `rand`.
...     rand = tf.random.normal(shape=inputs.shape, dtype=inputs.dtype)
...     return inputs + rand
>>> layer = AddRandom(dtype='mixed_float16')
>>> y = layer(x)
>>> y.dtype
tf.float16

If you did not pass dtype=inputs.dtype to tf.random.normal, a TypeError would have occurred. This is because the tf.random.normal's dtype defaults to "float32", but the input dtype is float16. You cannot add a float32 tensor with a float16 tensor.


[source]

global_policy function

tf_keras.mixed_precision.global_policy()

Returns the global dtype policy.

The global policy is the default tf.keras.mixed_precision.Policy used for layers, if no policy is passed to the layer constructor. If no policy has been set with keras.mixed_precision.set_global_policy, this will return a policy constructed from tf.keras.backend.floatx() (floatx defaults to float32).

>>> tf.keras.mixed_precision.global_policy()
<Policy "float32">
>>> tf.keras.layers.Dense(10).dtype_policy  # Defaults to the global policy
<Policy "float32">

If TensorFlow 2 behavior has been disabled with tf.compat.v1.disable_v2_behavior(), this will instead return a special "_infer" policy which infers the dtype from the dtype of the first input the first time the layer is called. This behavior matches the behavior that existed in TensorFlow 1.

See tf.keras.mixed_precision.Policy for more information on policies.

Returns

The global Policy.


[source]

set_global_policy function

tf_keras.mixed_precision.set_global_policy(policy)

Sets the global dtype policy.

The global policy is the default tf.keras.mixed_precision.Policy used for layers, if no policy is passed to the layer constructor.

>>> tf.keras.mixed_precision.set_global_policy('mixed_float16')
>>> tf.keras.mixed_precision.global_policy()
<Policy "mixed_float16">
>>> tf.keras.layers.Dense(10).dtype_policy
<Policy "mixed_float16">
>>> # Global policy is not used if a policy
>>> # is directly passed to constructor
>>> tf.keras.layers.Dense(10, dtype='float64').dtype_policy
<Policy "float64">
>>> tf.keras.mixed_precision.set_global_policy('float32')

If no global policy is set, layers will instead default to a Policy constructed from tf.keras.backend.floatx().

To use mixed precision, the global policy should be set to 'mixed_float16' or 'mixed_bfloat16', so that every layer uses a 16-bit compute dtype and float32 variable dtype by default.

Only floating point policies can be set as the global policy, such as 'float32' and 'mixed_float16'. Non-floating point policies such as 'int32' and 'complex64' cannot be set as the global policy because most layers do not support such policies.

See tf.keras.mixed_precision.Policy for more information.

Arguments

  • policy: A Policy, or a string that will be converted to a Policy. Can also be None, in which case the global policy will be constructed from tf.keras.backend.floatx()