BloomCausalLMPreprocessor classkeras_nlp.models.BloomCausalLMPreprocessor(
tokenizer, sequence_length=2048, add_start_token=True, add_end_token=True, **kwargs
)
BLOOM Causal LM preprocessor.
This preprocessing layer is meant for use with
keras_nlp.models.BloomCausalLM. By default, it will take in batches of
strings, and return outputs in a (x, y, sample_weight) format, where the
y label is the next token id in the x sequence.
For use with generation, the layer also exposes two methods
generate_preprocess() and generate_postprocess(). When this preprocessor
is attached to a keras_nlp.models.BloomCausalLM instance, these methods
will be called implicitly in generate(). They can also be called
standalone (e.g. to precompute preprocessing inputs for generation in a
separate process).
Arguments
keras_nlp.models.BloomTokenizer instance.True, the preprocessor will prepend the tokenizer
start token to each input sequence.True, the preprocessor will append the tokenizer
end token to each input sequence.Call arguments
tf.Tensor or list of python strings.None as the layer generates labels.None as the layer
generates label weights.sequence_length of
the layer.Examples
# Load the preprocessor from a preset.
preprocessor = keras_nlp.models.BloomCausalLMPreprocessor.from_preset(
"bloom_560m_multi"
)
# Tokenize and pack a single sentence.
sentence = tf.constant("League of legends")
preprocessor(sentence)
# Same output.
preprocessor("League of legends")
# Tokenize a batch of sentences.
sentences = tf.constant(["Taco tuesday", "Fish taco please!"])
preprocessor(sentences)
# Same output.
preprocessor(["Taco tuesday", "Fish taco please!"])
# Map a dataset to preprocess a single sentence.
features = tf.constant(
[
"Avatar 2 is amazing!",
"Well, I am not sure.",
]
)
labels = tf.constant([1, 0])
ds = tf.data.Dataset.from_tensor_slices((features, labels))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map a dataset to preprocess unlabled sentences.
ds = tf.data.Dataset.from_tensor_slices(features)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
from_preset methodBloomCausalLMPreprocessor.from_preset(preset, **kwargs)
Instantiate a keras_nlp.models.Preprocessor from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as a
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Preprocessor subclass, you can run cls.presets.keys() to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_nlp.models.BertPreprocessor.from_preset().
Arguments
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_nlp.models.GemmaCausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_nlp.models.BertPreprocessor.from_preset(
"bert_base_en",
)
| Preset name | Parameters | Description |
|---|---|---|
| bloom_560m_multi | 559.21M | 24-layer Bloom model with hidden dimension of 1024. trained on 45 natural languages and 12 programming languages. |
| bloom_1.1b_multi | 1.07B | 24-layer Bloom model with hidden dimension of 1536. trained on 45 natural languages and 12 programming languages. |
| bloom_1.7b_multi | 1.72B | 24-layer Bloom model with hidden dimension of 2048. trained on 45 natural languages and 12 programming languages. |
| bloom_3b_multi | 3.00B | 30-layer Bloom model with hidden dimension of 2560. trained on 45 natural languages and 12 programming languages. |
| bloomz_560m_multi | 559.21M | 24-layer Bloom model with hidden dimension of 1024. finetuned on crosslingual task mixture (xP3) dataset. |
| bloomz_1.1b_multi | 1.07B | 24-layer Bloom model with hidden dimension of 1536. finetuned on crosslingual task mixture (xP3) dataset. |
| bloomz_1.7b_multi | 1.72B | 24-layer Bloom model with hidden dimension of 2048. finetuned on crosslingual task mixture (xP3) dataset. |
| bloomz_3b_multi | 3.00B | 30-layer Bloom model with hidden dimension of 2560. finetuned on crosslingual task mixture (xP3) dataset. |
tokenizer propertykeras_nlp.models.BloomCausalLMPreprocessor.tokenizer
The tokenizer used to tokenize strings.