FalconBackbone
classkeras_nlp.models.FalconBackbone(
vocabulary_size,
num_layers,
num_attention_heads,
hidden_dim,
intermediate_dim,
layer_norm_epsilon=1e-05,
attention_dropout_rate=0,
feedforward_dropout_rate=0,
dtype=None,
**kwargs
)
The Falcon core architecure.
This network implements a Transformer-based decoder-only network, Falcon.
Arguments
keras.mixed_precision.DTypePolicy
. The dtype to use
for model computations and weights. Note that some computations,
such as softmax and layer normalization, will always be done at
float32 precision regardless of dtype.Examples
input_data = {
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
}
# Pretrained Falcon decoder.
# TODO: Update the preset.
model = keras_nlp.models.FalconBackbone.from_preset("falcon_preset")
model(input_data)
# Randomly initialized Falcon decoder with a custom config.
model = keras_nlp.models.FalconBackbone(
vocabulary_size=10,
num_layers=2,
num_attention_heads=2,
hidden_dim=32,
intermediate_dim=32*4,
layer_norm_epsilon=1e-5,
attention_dropout_rate=0,
feedforward_dropout_rate=0,
dtype="float32",
)
model(input_data)
from_preset
methodFalconBackbone.from_preset(preset, load_weights=True, **kwargs)
Instantiate a keras_nlp.models.Backbone
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as a
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
This constructor can be called in one of two ways. Either from the base
class like keras_nlp.models.Backbone.from_preset()
, or from
a model class like keras_nlp.models.GemmaBackbone.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
For any Backbone
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a Gemma backbone with pre-trained weights.
model = keras_nlp.models.Backbone.from_preset(
"gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_nlp.models.Backbone.from_preset(
"bert_base_en",
load_weights=False,
)
Preset name | Parameters | Description |
---|---|---|
falcon_refinedweb_1b_en | 1.31B | 24-layer Falcon model (Falcon with 1B parameters), trained on 350B tokens of RefinedWeb dataset. |
token_embedding
propertykeras_nlp.models.FalconBackbone.token_embedding
A keras.layers.Embedding
instance for embedding token ids.
This layer embeds integer token ids to the hidden dim of the model.