OPTTokenizer
classkeras_nlp.models.OPTTokenizer(vocabulary=None, merges=None, **kwargs)
An OPT tokenizer using Byte-Pair Encoding subword segmentation.
This tokenizer class will tokenize raw strings into integer sequences and
is based on keras_nlp.tokenizers.BytePairTokenizer
. Unlike the
underlying tokenizer, it will check for all special tokens needed by OPT
models and provides a from_preset()
method to automatically download
a matching vocabulary for a OPT preset.
This tokenizer does not provide truncation or padding of inputs.
If input is a batch of strings (rank > 0), the layer will output a
tf.RaggedTensor
where the last dimension of the output is ragged.
If input is a scalar string (rank == 0), the layer will output a dense
tf.Tensor
with static shape [None]
.
Arguments
Examples
# Unbatched input.
tokenizer = keras_nlp.models.OPTTokenizer.from_preset(
"opt_125m_en",
)
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
vocab = {"<pad>": 1, "</s>": 2, "Ġquick": 4, "Ġfox": 5}
merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
merges += ["Ġ f", "o x", "Ġf ox"]
tokenizer = keras_nlp.models.OPTTokenizer(vocabulary=vocab, merges=merges)
tokenizer("The quick brown fox jumped.")
from_preset
methodOPTTokenizer.from_preset(preset, **kwargs)
Instantiate a keras_nlp.models.Tokenizer
from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset
can be passed as a
one of:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
For any Tokenizer
subclass, you can run cls.presets.keys()
to list
all built-in presets available on the class.
This constructor can be called in one of two ways. Either from the base
class like keras_nlp.models.Tokenizer.from_preset()
, or from
a model class like keras_nlp.models.GemmaTokenizer.from_preset()
.
If calling from the base class, the subclass of the returning object
will be inferred from the config in the preset directory.
Arguments
True
, the weights will be loaded into the
model architecture. If False
, the weights will be randomly
initialized.Examples
# Load a preset tokenizer.
tokenizer = keras_nlp.tokenizerTokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
Preset name | Parameters | Description |
---|---|---|
opt_125m_en | 125.24M | 12-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora. |
opt_1.3b_en | 1.32B | 24-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora. |
opt_2.7b_en | 2.70B | 32-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora. |
opt_6.7b_en | 6.70B | 32-layer OPT model where case in maintained. Trained on BookCorpus, CommonCrawl, Pile, and PushShift.io corpora. |