PaliGemmaCausalLMPreprocessor classkeras_nlp.models.PaliGemmaCausalLMPreprocessor(
tokenizer, sequence_length=512, add_start_token=True, add_end_token=True, **kwargs
)
Gemma Causal LM preprocessor.
This preprocessing layer is meant for use with
keras_nlp.models.GemmaCausalLM. By default, it will take in batches of
strings, and return outputs in a (x, y, sample_weight) format, where the
y label is the next token id in the x sequence.
For use with generation, the layer also exposes two methods
generate_preprocess() and generate_postprocess(). When this preprocessor
is attached to a keras_nlp.models.GemmaCausalLM instance, these methods
will be called implicitly in generate(). They can also be called
standalone (e.g. to precompute preprocessing inputs for generation in a
separate process).
Arguments
keras_nlp.models.GemmaTokenizer instance.True, the preprocessor will prepend the tokenizer
start token to each input sequence.True, the preprocessor will append the tokenizer
end token to each input sequence.Call arguments
tf.Tensor or list of python strings.None as the layer generates labels.None as the layer
generates label weights.sequence_length of
the layer.Examples
# Load the preprocessor from a preset.
preprocessor = keras_nlp.models.GemmaCausalLMPreprocessor.from_preset(
"gemma_2b_en"
)
# Tokenize and pack a single sentence.
preprocessor("The quick brown fox jumped.")
# Tokenize a batch of sentences.
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
# Apply tokenization to a [`tf.data.Dataset`](https://www.tensorflow.org/api_docs/python/tf/data/Dataset).
features = tf.constant(["The quick brown fox.", "Call me Ishmael."])
ds = tf.data.Dataset.from_tensor_slices(features)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Prepare tokens for generation (no end token).
preprocessor.generate_preprocess(["The quick brown fox jumped."])
# Map generation outputs back to strings.
preprocessor.generate_postprocess({
'token_ids': np.array([[2, 714, 4320, 8426, 25341, 32292, 235265, 0]]),
'padding_mask': np.array([[ 1, 1, 1, 1, 1, 1, 1, 0]]),
})
from_preset methodPaliGemmaCausalLMPreprocessor.from_preset(preset, **kwargs)
Instantiate a keras_nlp.models.Preprocessor from a model preset.
A preset is a directory of configs, weights and other file assets used
to save and load a pre-trained model. The preset can be passed as a
one of:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''./bert_base_en'For any Preprocessor subclass, you can run cls.presets.keys() to
list all built-in presets available on the class.
As there are usually multiple preprocessing classes for a given model,
this method should be called on a specific subclass like
keras_nlp.models.BertPreprocessor.from_preset().
Arguments
Examples
# Load a preprocessor for Gemma generation.
preprocessor = keras_nlp.models.GemmaCausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_nlp.models.BertPreprocessor.from_preset(
"bert_base_en",
)
| Preset name | Parameters | Description |
|---|---|---|
| pali_gemma_3b_mix_224 | 2.92B | image size 224, mix fine tuned, text sequence length is 256 |
| pali_gemma_3b_mix_448 | 2.92B | image size 448, mix fine tuned, text sequence length is 512 |
| pali_gemma_3b_224 | 2.92B | image size 224, pre trained, text sequence length is 128 |
| pali_gemma_3b_448 | 2.92B | image size 448, pre trained, text sequence length is 512 |
| pali_gemma_3b_896 | 2.93B | image size 896, pre trained, text sequence length is 512 |
tokenizer propertykeras_nlp.models.PaliGemmaCausalLMPreprocessor.tokenizer
The tokenizer used to tokenize strings.