Keras 3 API 文档 / 层 API / 池化层 / 二维平均池化层

二维平均池化层

[source]

AveragePooling2D class

keras.layers.AveragePooling2D(
    pool_size, strides=None, padding="valid", data_format=None, name=None, **kwargs
)

平均池化操作,用于2D空间数据.

通过在输入窗口(大小由pool_size定义)上取平均值,沿其空间维度(高度和宽度)对输入进行下采样, 每个输入通道对应一个窗口.窗口沿每个维度按strides移动.

当使用"valid"填充选项时,生成的输出在空间形状(行数或列数)为: output_shape = math.floor((input_shape - pool_size) / strides) + 1 (当input_shape >= pool_size时)

当使用"same"填充选项时,生成的输出形状为: output_shape = math.floor((input_shape - 1) / strides) + 1

参数: pool_size: 整数或2个整数的元组,用于缩小比例 (dim1, dim2).如果只指定一个整数,则所有维度将使用相同长度的窗口. strides: 整数或2个整数的元组,或None.步幅值.如果为None, 则默认为pool_size.如果只指定一个整数,则所有维度将使用相同的步幅大小. padding: 字符串,可以是"valid""same"(不区分大小写). "valid"表示无填充."same"会导致在输入的左右或上下均匀填充, 使得输出具有与输入相同的高度/宽度维度. data_format: 字符串,可以是"channels_last""channels_first". 输入中维度的顺序."channels_last"对应于形状为(batch, height, width, channels)的输入, 而"channels_first"对应于形状为(batch, channels, height, width)的输入. 它默认为在~/.keras/keras.json中的image_data_format值. 如果您从未设置过它,那么它将是"channels_last".

输入形状:

  • 如果data_format="channels_last": 4D张量,形状为(batch_size, height, width, channels).
  • 如果data_format="channels_first": 4D张量,形状为(batch_size, channels, height, width).

输出形状:

  • 如果data_format="channels_last": 4D张量,形状为 (batch_size, pooled_height, pooled_width, channels).
  • 如果data_format="channels_first": 4D张量,形状为 (batch_size, channels, pooled_height, pooled_width).

示例:

strides=(1, 1)padding="valid":

>>> x = np.array([[1., 2., 3.],
...               [4., 5., 6.],
...               [7., 8., 9.]])
>>> x = np.reshape(x, [1, 3, 3, 1])
>>> avg_pool_2d = keras.layers.AveragePooling2D(pool_size=(2, 2),
...    strides=(1, 1), padding="valid")
>>> avg_pool_2d(x)

strides=(2, 2)padding="valid":

>>> x = np.array([[1., 2., 3., 4.],
...              [5., 6., 7., 8.],
...              [9., 10., 11., 12.]])
>>> x = np.reshape(x, [1, 3, 4, 1])
>>> avg_pool_2d = keras.layers.AveragePooling2D(pool_size=(2, 2),
...    strides=(2, 2), padding="valid")
>>> avg_pool_2d(x)

stride=(1, 1)padding="same":

>>> x = np.array([[1., 2., 3.],
...                  [4., 5., 6.],
...                  [7., 8., 9.]])
>>> x = np.reshape(x, [1, 3, 3, 1])
>>> avg_pool_2d = keras.layers.AveragePooling2D(pool_size=(2, 2),
...    strides=(1, 1), padding="same")
>>> avg_pool_2d(x)