Keras 3 API 文档 / 层 API / 重塑层 / 三维剪裁层

三维剪裁层

[source]

Cropping3D class

keras.layers.Cropping3D(
    cropping=((1, 1), (1, 1), (1, 1)), data_format=None, **kwargs
)

用于3D数据(例如空间或时空)的裁剪层.

示例:

>>> input_shape = (2, 28, 28, 10, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> y = keras.layers.Cropping3D(cropping=(2, 4, 2))(x)
>>> y.shape
(2, 24, 20, 6, 3)

参数: cropping: 整数,或3个整数的元组,或3个2个整数的元组的元组. - 如果为整数: 相同的对称裁剪应用于深度、高度和宽度. - 如果为3个整数的元组: 解释为深度、高度和宽度的三个不同的对称裁剪值: (symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop). - 如果为3个2个整数的元组的元组: 解释为 ((left_dim1_crop, right_dim1_crop), (left_dim2_crop, right_dim2_crop), (left_dim3_crop, right_dim3_crop)). data_format: 字符串,取值为"channels_last"(默认)或 "channels_first".输入中维度的顺序. "channels_last"对应于形状为 (batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)的输入 而"channels_first"对应于形状为 (batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)的输入. 如果未指定,使用在您的Keras配置文件~/.keras/keras.json中找到的image_data_format值(如果存在).默认为 "channels_last".

输入形状: 5D张量,形状为: - 如果data_format"channels_last": (batch_size, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, channels) - 如果data_format"channels_first": (batch_size, channels, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)

输出形状: 5D张量,形状为: - 如果data_format"channels_last": (batch_size, first_cropped_axis, second_cropped_axis, third_cropped_axis, channels) - 如果data_format"channels_first": (batch_size, channels, first_cropped_axis, second_cropped_axis, third_cropped_axis)