Adadelta
classkeras.optimizers.Adadelta(
learning_rate=0.001,
rho=0.95,
epsilon=1e-07,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=None,
loss_scale_factor=None,
gradient_accumulation_steps=None,
name="adadelta",
**kwargs
)
优化器实现了Adadelta算法.
Adadelta优化是一种随机梯度下降方法,基于每个维度的自适应学习率来解决两个缺点:
Adadelta是Adagrad的一个更强大的扩展,它根据梯度更新的移动窗口调整学习率,而不是累积所有过去的梯度.这样,即使在进行了许多更新之后,Adadelta仍然可以继续学习.与Adagrad相比,在Adadelta的原始版本中,您不需要设置初始学习率.在这个版本中,可以像大多数其他Keras优化器一样设置初始学习率.
参数:
learning_rate: 一个浮点数,一个
keras.optimizers.schedules.LearningRateSchedule
实例,或
一个不带参数并返回实际值的回调函数.学习率.默认为0.001
.注意,Adadelta
往往受益于比其他优化器更高的初始学习率值.要匹配原始论文的确切形式,
请使用1.0.
rho: 一个浮点数值.衰减率.默认为0.95
.
epsilon: 用于维护数值稳定性的小浮点数值.
name: String. The name to use
for momentum accumulator weights created by
the optimizer.
weight_decay: Float. If set, weight decay is applied.
clipnorm: Float. If set, the gradient of each weight is individually
clipped so that its norm is no higher than this value.
clipvalue: Float. If set, the gradient of each weight is clipped to be
no higher than this value.
global_clipnorm: Float. If set, the gradient of all weights is clipped
so that their global norm is no higher than this value.
use_ema: Boolean, defaults to False
.
If True
, exponential moving average
(EMA) is applied. EMA consists of computing an exponential moving
average of the weights of the model (as the weight values change
after each training batch), and periodically overwriting the
weights with their moving average.
ema_momentum: Float, defaults to 0.99. Only used if use_ema=True
.
This is the momentum to use when computing
the EMA of the model's weights:
new_average = ema_momentum * old_average + (1 - ema_momentum) *
current_variable_value
.
ema_overwrite_frequency: Int or None, defaults to None. Only used if
use_ema=True
. Every ema_overwrite_frequency
steps of iterations,
we overwrite the model variable by its moving average.
If None, the optimizer
does not overwrite model variables in the middle of training,
and you need to explicitly overwrite the variables
at the end of training by calling
optimizer.finalize_variable_values()
(which updates the model
variables in-place). When using the built-in fit()
training loop,
this happens automatically after the last epoch,
and you don't need to do anything.
loss_scale_factor: Float or None
. If a float, the scale factor will
be multiplied the loss before computing gradients, and the inverse
of the scale factor will be multiplied by the gradients before
updating variables. Useful for preventing underflow during
mixed precision training. Alternately,
keras.optimizers.LossScaleOptimizer
will
automatically set a loss scale factor.
gradient_accumulation_steps: Int or None
. If an int, model & optimizer
variables will not be updated at every step; instead they will be
updated every gradient_accumulation_steps
steps, using the average
value of the gradients since the last update. This is known as
"gradient accumulation". This can be useful
when your batch size is very small, in order to reduce gradient
noise at each update step. EMA frequency will look at "accumulated"
iterations value (optimizer steps // gradient_accumulation_steps).
Learning rate schedules will look at "real" iterations value
(optimizer steps).
参考文献: