代码示例 / 计算机视觉 / 简单的 MNIST 卷积神经网络

简单的 MNIST 卷积神经网络

作者: fchollet
创建日期: 2015/06/19
最后修改日期: 2020/04/21
描述: 一个简单的卷积神经网络,在 MNIST 上达到 ~99% 的测试准确率。

在 Colab 中查看 GitHub 源代码


设置

import numpy as np
import keras
from keras import layers

准备数据

# 模型/数据参数
num_classes = 10
input_shape = (28, 28, 1)

# 加载数据并将其分为训练集和测试集
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

# 将图像缩放到 [0, 1] 范围
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
# 确保图像的形状为 (28, 28, 1)
x_train = np.expand_dims(x_train, -1)
x_test = np.expand_dims(x_test, -1)
print("x_train shape:", x_train.shape)
print(x_train.shape[0], "训练样本")
print(x_test.shape[0], "测试样本")

# 将类向量转换为二进制类矩阵
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
x_train shape: (60000, 28, 28, 1)
60000 训练样本
10000 测试样本

构建模型

model = keras.Sequential(
    [
        keras.Input(shape=input_shape),
        layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),
        layers.MaxPooling2D(pool_size=(2, 2)),
        layers.Flatten(),
        layers.Dropout(0.5),
        layers.Dense(num_classes, activation="softmax"),
    ]
)

model.summary()
模型: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ 层 (类型)                       输出形状                  参数 # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv2d (Conv2D)                 │ (None, 26, 26, 32)        │        320 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d (MaxPooling2D)    │ (None, 13, 13, 32)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_1 (Conv2D)               │ (None, 11, 11, 64)        │     18,496 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_1 (MaxPooling2D)  │ (None, 5, 5, 64)          │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten (Flatten)               │ (, 1600)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout (Dropout)               │ (, 1600)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense (Dense)                   │ (, 10)                │     16,010 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 总参数: 34,826 (136.04 KB)
 可训练参数: 34,826 (136.04 KB)
 不可训练参数: 0 (0.00 B)

训练模型

batch_size = 128
epochs = 15

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_split=0.1)
Epoch 1/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 7s 9ms/step - accuracy: 0.7668 - loss: 0.7644 - val_accuracy: 0.9803 - val_loss: 0.0815
Epoch 2/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9627 - loss: 0.1237 - val_accuracy: 0.9833 - val_loss: 0.0623
Epoch 3/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9732 - loss: 0.0898 - val_accuracy: 0.9850 - val_loss: 0.0539
Epoch 4/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9761 - loss: 0.0763 - val_accuracy: 0.9880 - val_loss: 0.0421
Epoch 5/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9795 - loss: 0.0647 - val_accuracy: 0.9887 - val_loss: 0.0389
Epoch 6/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9824 - loss: 0.0580 - val_accuracy: 0.9903 - val_loss: 0.0345
Epoch 7/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9828 - loss: 0.0537 - val_accuracy: 0.9895 - val_loss: 0.0371
Epoch 8/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9838 - loss: 0.0503 - val_accuracy: 0.9907 - val_loss: 0.0340
Epoch 9/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9861 - loss: 0.0451 - val_accuracy: 0.9907 - val_loss: 0.0330
Epoch 10/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9866 - loss: 0.0427 - val_accuracy: 0.9917 - val_loss: 0.0298
Epoch 11/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9871 - loss: 0.0389 - val_accuracy: 0.9920 - val_loss: 0.0297
Epoch 12/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9885 - loss: 0.0371 - val_accuracy: 0.9912 - val_loss: 0.0285
Epoch 13/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9901 - loss: 0.0332 - val_accuracy: 0.9922 - val_loss: 0.0290
Epoch 14/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9885 - loss: 0.0340 - val_accuracy: 0.9923 - val_loss: 0.0283
Epoch 15/15
 422/422 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9891 - loss: 0.0326 - val_accuracy: 0.9925 - val_loss: 0.0273

<keras.src.callbacks.history.History at 0x7f8497818af0>

评估训练好的模型

score = model.evaluate(x_test, y_test, verbose=0)
print("测试损失:", score[0])
print("测试准确率:", score[1])
测试损失: 0.02499214932322502
测试准确率: 0.9919000267982483