langchain_aws.chat_models.bedrock ηš„ζΊδ»£η 

import re
from collections import defaultdict
from operator import itemgetter
from typing import (
    Any,
    Callable,
    Dict,
    Iterator,
    List,
    Literal,
    Optional,
    Sequence,
    Tuple,
    Union,
    cast,
)

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models import (
    BaseChatModel,
    LangSmithParams,
    LanguageModelInput,
)
from langchain_core.language_models.chat_models import generate_from_stream
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.messages.ai import UsageMetadata
from langchain_core.messages.tool import ToolCall, ToolMessage
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils.pydantic import TypeBaseModel, is_basemodel_subclass
from pydantic import BaseModel, ConfigDict, model_validator

from langchain_aws.chat_models.bedrock_converse import ChatBedrockConverse
from langchain_aws.function_calling import (
    ToolsOutputParser,
    _lc_tool_calls_to_anthropic_tool_use_blocks,
    convert_to_anthropic_tool,
    get_system_message,
)
from langchain_aws.llms.bedrock import (
    BedrockBase,
    _combine_generation_info_for_llm_result,
)
from langchain_aws.utils import (
    get_num_tokens_anthropic,
    get_token_ids_anthropic,
)


def _convert_one_message_to_text_llama(message: BaseMessage) -> str:
    if isinstance(message, ChatMessage):
        message_text = f"\n\n{message.role.capitalize()}: {message.content}"
    elif isinstance(message, HumanMessage):
        message_text = f"[INST] {message.content} [/INST]"
    elif isinstance(message, AIMessage):
        message_text = f"{message.content}"
    elif isinstance(message, SystemMessage):
        message_text = f"<<SYS>> {message.content} <</SYS>>"
    else:
        raise ValueError(f"Got unknown type {message}")
    return message_text


[docs] def convert_messages_to_prompt_llama(messages: List[BaseMessage]) -> str: """Convert a list of messages to a prompt for llama.""" return "\n".join( [_convert_one_message_to_text_llama(message) for message in messages] )
def _convert_one_message_to_text_llama3(message: BaseMessage) -> str: if isinstance(message, ChatMessage): message_text = ( f"<|start_header_id|>{message.role}" f"<|end_header_id|>{message.content}<|eot_id|>" ) elif isinstance(message, HumanMessage): message_text = ( f"<|start_header_id|>user" f"<|end_header_id|>{message.content}<|eot_id|>" ) elif isinstance(message, AIMessage): message_text = ( f"<|start_header_id|>assistant" f"<|end_header_id|>{message.content}<|eot_id|>" ) elif isinstance(message, SystemMessage): message_text = ( f"<|start_header_id|>system" f"<|end_header_id|>{message.content}<|eot_id|>" ) else: raise ValueError(f"Got unknown type {message}") return message_text
[docs] def convert_messages_to_prompt_llama3(messages: List[BaseMessage]) -> str: """Convert a list of messages to a prompt for llama.""" return "\n".join( ["<|begin_of_text|>"] + [_convert_one_message_to_text_llama3(message) for message in messages] + ["<|start_header_id|>assistant<|end_header_id|>\n\n"] )
def _convert_one_message_to_text_anthropic( message: BaseMessage, human_prompt: str, ai_prompt: str, ) -> str: content = cast(str, message.content) if isinstance(message, ChatMessage): message_text = f"\n\n{message.role.capitalize()}: {content}" elif isinstance(message, HumanMessage): message_text = f"{human_prompt} {content}" elif isinstance(message, AIMessage): message_text = f"{ai_prompt} {content}" elif isinstance(message, SystemMessage): message_text = content else: raise ValueError(f"Got unknown type {message}") return message_text
[docs] def convert_messages_to_prompt_anthropic( messages: List[BaseMessage], *, human_prompt: str = "\n\nHuman:", ai_prompt: str = "\n\nAssistant:", ) -> str: """Format a list of messages into a full prompt for the Anthropic model Args: messages (List[BaseMessage]): List of BaseMessage to combine. human_prompt (str, optional): Human prompt tag. Defaults to "\n\nHuman:". ai_prompt (str, optional): AI prompt tag. Defaults to "\n\nAssistant:". Returns: str: Combined string with necessary human_prompt and ai_prompt tags. """ messages = messages.copy() # don't mutate the original list if not isinstance(messages[-1], AIMessage): messages.append(AIMessage(content="")) text = "".join( _convert_one_message_to_text_anthropic(message, human_prompt, ai_prompt) for message in messages ) # trim off the trailing ' ' that might come from the "Assistant: " return text.rstrip()
def _convert_one_message_to_text_mistral(message: BaseMessage) -> str: if isinstance(message, ChatMessage): message_text = f"\n\n{message.role.capitalize()}: {message.content}" elif isinstance(message, HumanMessage): message_text = f"[INST] {message.content} [/INST]" elif isinstance(message, AIMessage): message_text = f"{message.content}" elif isinstance(message, SystemMessage): message_text = f"<<SYS>> {message.content} <</SYS>>" else: raise ValueError(f"Got unknown type {message}") return message_text
[docs] def convert_messages_to_prompt_mistral(messages: List[BaseMessage]) -> str: """Convert a list of messages to a prompt for mistral.""" return "\n".join( [_convert_one_message_to_text_mistral(message) for message in messages] )
def _format_image(image_url: str) -> Dict: """ Formats an image of format data:image/jpeg;base64,{b64_string} to a dict for anthropic api { "type": "base64", "media_type": "image/jpeg", "data": "/9j/4AAQSkZJRg...", } And throws an error if it's not a b64 image """ regex = r"^data:(?P<media_type>image/.+);base64,(?P<data>.+)$" match = re.match(regex, image_url) if match is None: raise ValueError( "Anthropic only supports base64-encoded images currently." " Example: data:image/png;base64,'/9j/4AAQSk'..." ) return { "type": "base64", "media_type": match.group("media_type"), "data": match.group("data"), } def _merge_messages( messages: Sequence[BaseMessage], ) -> List[Union[SystemMessage, AIMessage, HumanMessage]]: """Merge runs of human/tool messages into single human messages with content blocks.""" # noqa: E501 merged: list = [] for curr in messages: curr = curr.model_copy(deep=True) if isinstance(curr, ToolMessage): if isinstance(curr.content, list) and all( isinstance(block, dict) and block.get("type") == "tool_result" for block in curr.content ): curr = HumanMessage(curr.content) # type: ignore[misc] else: curr = HumanMessage( # type: ignore[misc] [ { "type": "tool_result", "content": curr.content, "tool_use_id": curr.tool_call_id, } ] ) last = merged[-1] if merged else None if isinstance(last, HumanMessage) and isinstance(curr, HumanMessage): if isinstance(last.content, str): new_content: List = [{"type": "text", "text": last.content}] else: new_content = last.content if isinstance(curr.content, str): new_content.append({"type": "text", "text": curr.content}) else: new_content.extend(curr.content) last.content = new_content else: merged.append(curr) return merged def _format_anthropic_messages( messages: List[BaseMessage], ) -> Tuple[Optional[str], List[Dict]]: """Format messages for anthropic.""" system: Optional[str] = None formatted_messages: List[Dict] = [] merged_messages = _merge_messages(messages) for i, message in enumerate(merged_messages): if message.type == "system": if i != 0: raise ValueError("System message must be at beginning of message list.") if not isinstance(message.content, str): raise ValueError( "System message must be a string, " f"instead was: {type(message.content)}" ) system = message.content continue role = _message_type_lookups[message.type] content: Union[str, List] if not isinstance(message.content, str): # parse as dict assert isinstance( message.content, list ), "Anthropic message content must be str or list of dicts" # populate content content = [] for item in message.content: if isinstance(item, str): content.append({"type": "text", "text": item}) elif isinstance(item, dict): if "type" not in item: raise ValueError("Dict content item must have a type key") elif item["type"] == "image_url": # convert format source = _format_image(item["image_url"]["url"]) content.append({"type": "image", "source": source}) elif item["type"] == "tool_use": # If a tool_call with the same id as a tool_use content block # exists, the tool_call is preferred. if isinstance(message, AIMessage) and item["id"] in [ tc["id"] for tc in message.tool_calls ]: overlapping = [ tc for tc in message.tool_calls if tc["id"] == item["id"] ] content.extend( _lc_tool_calls_to_anthropic_tool_use_blocks(overlapping) ) else: item.pop("text", None) content.append(item) elif item["type"] == "text": text = item.get("text", "") # Only add non-empty strings for now as empty ones are not # accepted. # https://github.com/anthropics/anthropic-sdk-python/issues/461 if text.strip(): content.append({"type": "text", "text": text}) else: content.append(item) else: raise ValueError( f"Content items must be str or dict, instead was: {type(item)}" ) elif isinstance(message, AIMessage) and message.tool_calls: content = ( [] if not message.content else [{"type": "text", "text": message.content}] ) # Note: Anthropic can't have invalid tool calls as presently defined, # since the model already returns dicts args not JSON strings, and invalid # tool calls are those with invalid JSON for args. content += _lc_tool_calls_to_anthropic_tool_use_blocks(message.tool_calls) else: content = message.content formatted_messages.append({"role": role, "content": content}) return system, formatted_messages
[docs] class ChatPromptAdapter: """Adapter class to prepare the inputs from Langchain to prompt format that Chat model expects. """
[docs] @classmethod def convert_messages_to_prompt( cls, provider: str, messages: List[BaseMessage], model: str ) -> str: if provider == "anthropic": prompt = convert_messages_to_prompt_anthropic(messages=messages) elif provider == "meta": if "llama3" in model: prompt = convert_messages_to_prompt_llama3(messages=messages) else: prompt = convert_messages_to_prompt_llama(messages=messages) elif provider == "mistral": prompt = convert_messages_to_prompt_mistral(messages=messages) elif provider == "amazon": prompt = convert_messages_to_prompt_anthropic( messages=messages, human_prompt="\n\nUser:", ai_prompt="\n\nBot:", ) else: raise NotImplementedError( f"Provider {provider} model does not support chat." ) return prompt
[docs] @classmethod def format_messages( cls, provider: str, messages: List[BaseMessage] ) -> Tuple[Optional[str], List[Dict]]: if provider == "anthropic": return _format_anthropic_messages(messages) raise NotImplementedError( f"Provider {provider} not supported for format_messages" )
_message_type_lookups = { "human": "user", "ai": "assistant", "AIMessageChunk": "assistant", "HumanMessageChunk": "user", }
[docs] class ChatBedrock(BaseChatModel, BedrockBase): """A chat model that uses the Bedrock API.""" system_prompt_with_tools: str = "" beta_use_converse_api: bool = False """Use the new Bedrock ``converse`` API which provides a standardized interface to all Bedrock models. Support still in beta. See ChatBedrockConverse docs for more.""" @property def _llm_type(self) -> str: """Return type of chat model.""" return "amazon_bedrock_chat" @classmethod def is_lc_serializable(cls) -> bool: """Return whether this model can be serialized by Langchain.""" return True @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "chat_models", "bedrock"] @model_validator(mode="before") @classmethod def set_beta_use_converse_api(cls, values: Dict) -> Any: model_id = values.get("model_id", values.get("model")) if model_id and "beta_use_converse_api" not in values: values["beta_use_converse_api"] = "nova" in model_id return values @property def lc_attributes(self) -> Dict[str, Any]: attributes: Dict[str, Any] = {} if self.region_name: attributes["region_name"] = self.region_name return attributes model_config = ConfigDict( extra="forbid", populate_by_name=True, ) def _get_ls_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> LangSmithParams: """Get standard params for tracing.""" params = self._get_invocation_params(stop=stop, **kwargs) ls_params = LangSmithParams( ls_provider="amazon_bedrock", ls_model_name=self.model_id, ls_model_type="chat", ) if ls_temperature := params.get("temperature", self.temperature): ls_params["ls_temperature"] = ls_temperature if ls_max_tokens := params.get("max_tokens", self.max_tokens): ls_params["ls_max_tokens"] = ls_max_tokens if ls_stop := stop or params.get("stop", None): ls_params["ls_stop"] = ls_stop return ls_params def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: if self.beta_use_converse_api: yield from self._as_converse._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return provider = self._get_provider() prompt, system, formatted_messages = None, None, None if provider == "anthropic": system, formatted_messages = ChatPromptAdapter.format_messages( provider, messages ) if self.system_prompt_with_tools: if system: system = self.system_prompt_with_tools + f"\n{system}" else: system = self.system_prompt_with_tools else: prompt = ChatPromptAdapter.convert_messages_to_prompt( provider=provider, messages=messages, model=self._get_model() ) for chunk in self._prepare_input_and_invoke_stream( prompt=prompt, system=system, messages=formatted_messages, stop=stop, run_manager=run_manager, **kwargs, ): if isinstance(chunk, AIMessageChunk): generation_chunk = ChatGenerationChunk(message=chunk) if run_manager: run_manager.on_llm_new_token( generation_chunk.text, chunk=generation_chunk ) yield generation_chunk else: delta = chunk.text if generation_info := chunk.generation_info: usage_metadata = generation_info.pop("usage_metadata", None) else: usage_metadata = None generation_chunk = ChatGenerationChunk( message=AIMessageChunk( content=delta, response_metadata=chunk.generation_info, usage_metadata=usage_metadata, ) if chunk.generation_info is not None else AIMessageChunk(content=delta) ) if run_manager: run_manager.on_llm_new_token( generation_chunk.text, chunk=generation_chunk ) yield generation_chunk def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: if self.beta_use_converse_api: return self._as_converse._generate( messages, stop=stop, run_manager=run_manager, **kwargs ) completion = "" llm_output: Dict[str, Any] = {} tool_calls: List[ToolCall] = [] provider_stop_reason_code = self.provider_stop_reason_key_map.get( self._get_provider(), "stop_reason" ) provider = self._get_provider() if self.streaming: if provider == "anthropic": stream_iter = self._stream(messages, stop, run_manager, **kwargs) return generate_from_stream(stream_iter) response_metadata: List[Dict[str, Any]] = [] for chunk in self._stream(messages, stop, run_manager, **kwargs): completion += chunk.text response_metadata.append(chunk.message.response_metadata) if "tool_calls" in chunk.message.additional_kwargs.keys(): tool_calls = chunk.message.additional_kwargs["tool_calls"] llm_output = _combine_generation_info_for_llm_result( response_metadata, provider_stop_reason_code ) else: prompt, system, formatted_messages = None, None, None params: Dict[str, Any] = {**kwargs} if provider == "anthropic": system, formatted_messages = ChatPromptAdapter.format_messages( provider, messages ) # use tools the new way with claude 3 if self.system_prompt_with_tools: if system: system = self.system_prompt_with_tools + f"\n{system}" else: system = self.system_prompt_with_tools else: prompt = ChatPromptAdapter.convert_messages_to_prompt( provider=provider, messages=messages, model=self._get_model() ) if stop: params["stop_sequences"] = stop completion, tool_calls, llm_output = self._prepare_input_and_invoke( prompt=prompt, stop=stop, run_manager=run_manager, system=system, messages=formatted_messages, **params, ) # usage metadata if usage := llm_output.get("usage"): input_tokens = usage.get("prompt_tokens", 0) output_tokens = usage.get("completion_tokens", 0) usage_metadata = UsageMetadata( input_tokens=input_tokens, output_tokens=output_tokens, total_tokens=usage.get("total_tokens", input_tokens + output_tokens), ) else: usage_metadata = None llm_output["model_id"] = self.model_id msg = AIMessage( content=completion, additional_kwargs=llm_output, tool_calls=cast(List[ToolCall], tool_calls), usage_metadata=usage_metadata, ) return ChatResult( generations=[ ChatGeneration( message=msg, ) ], llm_output=llm_output, ) def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: final_usage: Dict[str, int] = defaultdict(int) final_output = {} for output in llm_outputs: output = output or {} usage = output.get("usage", {}) for token_type, token_count in usage.items(): final_usage[token_type] += token_count final_output.update(output) final_output["usage"] = final_usage return final_output
[docs] def get_num_tokens(self, text: str) -> int: if self._model_is_anthropic: return get_num_tokens_anthropic(text) else: return super().get_num_tokens(text)
[docs] def get_token_ids(self, text: str) -> List[int]: if self._model_is_anthropic: return get_token_ids_anthropic(text) else: return super().get_token_ids(text)
[docs] def set_system_prompt_with_tools(self, xml_tools_system_prompt: str) -> None: """Workaround to bind. Sets the system prompt with tools""" self.system_prompt_with_tools = xml_tools_system_prompt
[docs] def bind_tools( self, tools: Sequence[Union[Dict[str, Any], TypeBaseModel, Callable, BaseTool]], *, tool_choice: Optional[Union[dict, str, Literal["auto", "none"], bool]] = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: """Bind tool-like objects to this chat model. Assumes model has a tool calling API. Args: tools: A list of tool definitions to bind to this chat model. Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic models, callables, and BaseTools will be automatically converted to their schema dictionary representation. tool_choice: Which tool to require the model to call. Must be the name of the single provided function or "auto" to automatically determine which function to call (if any), or a dict of the form: {"type": "function", "function": {"name": <<tool_name>>}}. **kwargs: Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor. """ if self.beta_use_converse_api: if isinstance(tool_choice, bool): tool_choice = "any" if tool_choice else None return self._as_converse.bind_tools( tools, tool_choice=tool_choice, **kwargs ) if self._get_provider() == "anthropic": formatted_tools = [convert_to_anthropic_tool(tool) for tool in tools] # true if the model is a claude 3 model if "claude-3" in self._get_model(): if not tool_choice: pass elif isinstance(tool_choice, dict): kwargs["tool_choice"] = tool_choice elif isinstance(tool_choice, str) and tool_choice in ("any", "auto"): kwargs["tool_choice"] = {"type": tool_choice} elif isinstance(tool_choice, str): kwargs["tool_choice"] = {"type": "tool", "name": tool_choice} else: raise ValueError( f"Unrecognized 'tool_choice' type {tool_choice=}." f"Expected dict, str, or None." ) return self.bind(tools=formatted_tools, **kwargs) else: # add tools to the system prompt, the old way system_formatted_tools = get_system_message(formatted_tools) self.set_system_prompt_with_tools(system_formatted_tools) return self
[docs] def with_structured_output( self, schema: Union[Dict, TypeBaseModel], *, include_raw: bool = False, **kwargs: Any, ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: """Model wrapper that returns outputs formatted to match the given schema. Args: schema: The output schema as a dict or a Pydantic class. If a Pydantic class then the model output will be an object of that class. If a dict then the model output will be a dict. With a Pydantic class the returned attributes will be validated, whereas with a dict they will not be. include_raw: If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys "raw", "parsed", and "parsing_error". Returns: A Runnable that takes any ChatModel input. The output type depends on include_raw and schema. If include_raw is True then output is a dict with keys: raw: BaseMessage, parsed: Optional[_DictOrPydantic], parsing_error: Optional[BaseException], If include_raw is False and schema is a Dict then the runnable outputs a Dict. If include_raw is False and schema is a Type[BaseModel] then the runnable outputs a BaseModel. Example: Pydantic schema (include_raw=False): .. code-block:: python from langchain_aws.chat_models.bedrock import ChatBedrock from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm =ChatBedrock( model_id="anthropic.claude-3-sonnet-20240229-v1:0", model_kwargs={"temperature": 0.001}, ) # type: ignore[call-arg] structured_llm = llm.with_structured_output(AnswerWithJustification) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> AnswerWithJustification( # answer='They weigh the same', # justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.' # ) Example: Pydantic schema (include_raw=True): .. code-block:: python from langchain_aws.chat_models.bedrock import ChatBedrock from pydantic import BaseModel class AnswerWithJustification(BaseModel): '''An answer to the user question along with justification for the answer.''' answer: str justification: str llm =ChatBedrock( model_id="anthropic.claude-3-sonnet-20240229-v1:0", model_kwargs={"temperature": 0.001}, ) # type: ignore[call-arg] structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}), # 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'), # 'parsing_error': None # } Example: Dict schema (include_raw=False): .. code-block:: python from langchain_aws.chat_models.bedrock import ChatBedrock schema = { "name": "AnswerWithJustification", "description": "An answer to the user question along with justification for the answer.", "input_schema": { "type": "object", "properties": { "answer": {"type": "string"}, "justification": {"type": "string"}, }, "required": ["answer", "justification"] } } llm =ChatBedrock( model_id="anthropic.claude-3-sonnet-20240229-v1:0", model_kwargs={"temperature": 0.001}, ) # type: ignore[call-arg] structured_llm = llm.with_structured_output(schema) structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers") # -> { # 'answer': 'They weigh the same', # 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.' # } """ # noqa: E501 if self.beta_use_converse_api: return self._as_converse.with_structured_output( schema, include_raw=include_raw, **kwargs ) if "claude-3" not in self._get_model(): ValueError( f"Structured output is not supported for model {self._get_model()}" ) tool_name = convert_to_anthropic_tool(schema)["name"] llm = self.bind_tools([schema], tool_choice=tool_name) if isinstance(schema, type) and is_basemodel_subclass(schema): output_parser = ToolsOutputParser( first_tool_only=True, pydantic_schemas=[schema] ) else: output_parser = ToolsOutputParser(first_tool_only=True, args_only=True) if include_raw: parser_assign = RunnablePassthrough.assign( parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None ) parser_none = RunnablePassthrough.assign(parsed=lambda _: None) parser_with_fallback = parser_assign.with_fallbacks( [parser_none], exception_key="parsing_error" ) return RunnableMap(raw=llm) | parser_with_fallback else: return llm | output_parser
@property def _as_converse(self) -> ChatBedrockConverse: kwargs = { k: v for k, v in (self.model_kwargs or {}).items() if k in ( "stop", "stop_sequences", "max_tokens", "temperature", "top_p", "additional_model_request_fields", "additional_model_response_field_paths", ) } if self.max_tokens: kwargs["max_tokens"] = self.max_tokens if self.temperature is not None: kwargs["temperature"] = self.temperature return ChatBedrockConverse( model=self.model_id, region_name=self.region_name, credentials_profile_name=self.credentials_profile_name, aws_access_key_id=self.aws_access_key_id, aws_secret_access_key=self.aws_secret_access_key, aws_session_token=self.aws_session_token, config=self.config, provider=self.provider or "", base_url=self.endpoint_url, guardrail_config=(self.guardrails if self._guardrails_enabled else None), # type: ignore[call-arg] **kwargs, )