langchain_cerebras.chat_models ηš„ζΊδ»£η 

"""Wrapper around Cerebras' Chat Completions API."""

from typing import Any, Dict, List, Optional

import openai
from langchain_core.language_models.chat_models import LangSmithParams
from langchain_core.utils import (
    from_env,
    secret_from_env,
)

# We ignore the "unused imports" here since we want to reexport these from this package.
from langchain_openai.chat_models.base import (
    BaseChatOpenAI,
)
from pydantic import Field, SecretStr, model_validator
from typing_extensions import Self

CEREBRAS_BASE_URL = "https://api.cerebras.ai/v1/"


[docs] class ChatCerebras(BaseChatOpenAI): r"""ChatCerebras chat model. Setup: Install ``langchain-cerebras`` and set environment variable ``CEREBRAS_API_KEY``. .. code-block:: bash pip install -U langchain-cerebras export CEREBRAS_API_KEY="your-api-key" Key init args β€” completion params: model: str Name of model to use. temperature: float Sampling temperature. max_tokens: Optional[int] Max number of tokens to generate. Key init args β€” client params: timeout: Union[float, Tuple[float, float], Any, None] Timeout for requests. max_retries: int Max number of retries. api_key: Optional[str] Cerebras API key. If not passed in will be read from env var CEREBRAS_API_KEY. Instantiate: .. code-block:: python from langchain_cerebras import ChatCerebras llm = ChatCerebras( model="llama-3.3-70b", temperature=0, max_tokens=None, timeout=None, max_retries=2, # api_key="...", # other params... ) Invoke: .. code-block:: python messages = [ ( "system", "You are a helpful translator. Translate the user sentence to French.", ), ("human", "I love programming."), ] llm.invoke(messages) .. code-block:: python AIMessage( content='The translation of "I love programming" to French is:\n\n"J\'adore programmer."', response_metadata={ 'token_usage': {'completion_tokens': 20, 'prompt_tokens': 32, 'total_tokens': 52}, 'model_name': 'llama-3.3-70b', 'system_fingerprint': 'fp_679dff74c0', 'finish_reason': 'stop', }, id='run-377c2887-30ef-417e-b0f5-83efc8844f12-0', usage_metadata={'input_tokens': 32, 'output_tokens': 20, 'total_tokens': 52}) Stream: .. code-block:: python for chunk in llm.stream(messages): print(chunk) .. code-block:: python content='' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content='The' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content=' translation' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content=' of' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content=' "' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content='I' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content=' love' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content=' programming' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content='"' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content=' to' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content=' French' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content=' is' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content=':\n\n' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content='"' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content='J' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content="'" id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content='ad' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content='ore' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content=' programmer' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content='."' id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' content='' response_metadata={'finish_reason': 'stop', 'model_name': 'llama-3.3-70b', 'system_fingerprint': 'fp_679dff74c0'} id='run-3f9dc84e-208f-48da-b15d-e552b6759c24' Async: .. code-block:: python await llm.ainvoke(messages) # stream: # async for chunk in (await llm.astream(messages)) # batch: # await llm.abatch([messages]) .. code-block:: python AIMessage( content='The translation of "I love programming" to French is:\n\n"J\'adore programmer."', response_metadata={ 'token_usage': {'completion_tokens': 20, 'prompt_tokens': 32, 'total_tokens': 52}, 'model_name': 'llama-3.3-70b', 'system_fingerprint': 'fp_679dff74c0', 'finish_reason': 'stop', }, id='run-377c2887-30ef-417e-b0f5-83efc8844f12-0', usage_metadata={'input_tokens': 32, 'output_tokens': 20, 'total_tokens': 52}) Tool calling: .. code-block:: python from langchain_core.pydantic_v1 import BaseModel, Field llm = ChatCerebras(model="llama-3.3-70b") class GetWeather(BaseModel): '''Get the current weather in a given location''' location: str = Field( ..., description="The city and state, e.g. San Francisco, CA" ) class GetPopulation(BaseModel): '''Get the current population in a given location''' location: str = Field( ..., description="The city and state, e.g. San Francisco, CA" ) llm_with_tools = llm.bind_tools([GetWeather, GetPopulation]) ai_msg = llm_with_tools.invoke( "Which city is bigger: LA or NY?" ) ai_msg.tool_calls .. code-block:: python [ { 'name': 'GetPopulation', 'args': {'location': 'NY'}, 'id': 'call_m5tstyn2004pre9bfuxvom8x', 'type': 'tool_call' }, { 'name': 'GetPopulation', 'args': {'location': 'LA'}, 'id': 'call_0vjgq455gq1av5sp9eb1pw6a', 'type': 'tool_call' } ] Structured output: .. code-block:: python from typing import Optional from langchain_core.pydantic_v1 import BaseModel, Field class Joke(BaseModel): '''Joke to tell user.''' setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10") structured_llm = llm.with_structured_output(Joke) structured_llm.invoke("Tell me a joke about cats") .. code-block:: python Joke( setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=7 ) JSON mode: .. code-block:: python json_llm = llm.bind(response_format={"type": "json_object"}) ai_msg = json_llm.invoke( "Return a JSON object with key 'random_ints' and a value of 10 random ints in [0-99]" ) ai_msg.content .. code-block:: python ' {\\n"random_ints": [\\n13,\\n54,\\n78,\\n45,\\n67,\\n90,\\n11,\\n29,\\n84,\\n33\\n]\\n}' Token usage: .. code-block:: python ai_msg = llm.invoke(messages) ai_msg.usage_metadata .. code-block:: python {'input_tokens': 37, 'output_tokens': 6, 'total_tokens': 43} Response metadata .. code-block:: python ai_msg = llm.invoke(messages) ai_msg.response_metadata .. code-block:: python { 'token_usage': { 'completion_tokens': 4, 'prompt_tokens': 19, 'total_tokens': 23 }, 'model_name': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'system_fingerprint': None, 'finish_reason': 'eos', 'logprobs': None } """ # noqa: E501 @property def lc_secrets(self) -> Dict[str, str]: """A map of constructor argument names to secret ids. For example, {"cerebras_api_key": "CEREBRAS_API_KEY"} """ return {"cerebras_api_key": "CEREBRAS_API_KEY"} @classmethod def get_lc_namespace(cls) -> List[str]: """Get the namespace of the langchain object.""" return ["langchain", "chat_models", "cerebras"] @property def lc_attributes(self) -> Dict[str, Any]: """List of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. """ attributes: Dict[str, Any] = {} if self.cerebras_api_base: attributes["cerebras_api_base"] = self.cerebras_api_base if self.cerebras_proxy: attributes["cerebras_proxy"] = self.cerebras_proxy return attributes @property def _llm_type(self) -> str: """Return type of chat model.""" return "cerebras-chat" def _get_ls_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> LangSmithParams: """Get the parameters used to invoke the model.""" params = super()._get_ls_params(stop=stop, **kwargs) params["ls_provider"] = "cerebras" return params model_name: str = Field(alias="model") """Model name to use.""" cerebras_api_key: Optional[SecretStr] = Field( alias="api_key", default_factory=secret_from_env("CEREBRAS_API_KEY", default=None), ) """Automatically inferred from env are `CEREBRAS_API_KEY` if not provided.""" cerebras_api_base: str = Field( default_factory=from_env("CEREBRAS_API_BASE", default=CEREBRAS_BASE_URL), alias="base_url", ) cerebras_proxy: str = Field(default_factory=from_env("CEREBRAS_PROXY", default="")) @model_validator(mode="after") def validate_environment(self) -> Self: """Validate that api key and python package exists in environment.""" if self.n < 1: raise ValueError("n must be at least 1.") if self.n > 1 and self.streaming: raise ValueError("n must be 1 when streaming.") client_params = { "api_key": ( self.cerebras_api_key.get_secret_value() if self.cerebras_api_key else None ), # Ensure we always fallback to the Cerebras API url. "base_url": self.cerebras_api_base, "timeout": self.request_timeout, "max_retries": self.max_retries, "default_headers": self.default_headers, "default_query": self.default_query, } if self.cerebras_proxy and (self.http_client or self.http_async_client): raise ValueError( "Cannot specify 'cerebras_proxy' if one of " "'http_client'/'http_async_client' is already specified. Received:\n" f"{self.cerebras_proxy=}\n{self.http_client=}\n{self.http_async_client=}" ) if not self.client: if self.cerebras_proxy and not self.http_client: try: import httpx except ImportError as e: raise ImportError( "Could not import httpx python package. " "Please install it with `pip install httpx`." ) from e self.http_client = httpx.Client(proxy=self.cerebras_proxy) sync_specific = {"http_client": self.http_client} self.root_client = openai.OpenAI(**client_params, **sync_specific) # type: ignore self.client = self.root_client.chat.completions if not self.async_client: if self.cerebras_proxy and not self.http_async_client: try: import httpx except ImportError as e: raise ImportError( "Could not import httpx python package. " "Please install it with `pip install httpx`." ) from e self.http_async_client = httpx.AsyncClient(proxy=self.cerebras_proxy) async_specific = {"http_client": self.http_async_client} self.root_async_client = openai.AsyncOpenAI( **client_params, # type: ignore **async_specific, # type: ignore ) self.async_client = self.root_async_client.chat.completions return self