langchain_cohere.rerank ηζΊδ»£η
from __future__ import annotations
from copy import deepcopy
from typing import Any, Dict, List, Optional, Sequence, Union
import cohere
from langchain_core.callbacks.manager import Callbacks
from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.utils import secret_from_env
from pydantic import ConfigDict, Field, SecretStr, model_validator
from typing_extensions import Self
[docs]
class CohereRerank(BaseDocumentCompressor):
"""Document compressor that uses `Cohere Rerank API`."""
client: Any = None
"""Cohere client to use for compressing documents."""
top_n: Optional[int] = 3
"""Number of documents to return."""
model: Optional[str] = None
"""Model to use for reranking. Mandatory to specify the model name."""
cohere_api_key: Optional[SecretStr] = Field(
default_factory=secret_from_env("COHERE_API_KEY", default=None)
)
"""Cohere API key. Must be specified directly or via environment variable
COHERE_API_KEY."""
user_agent: str = "langchain:partner"
"""Identifier for the application making the request."""
model_config = ConfigDict(
extra="forbid",
arbitrary_types_allowed=True,
)
@model_validator(mode="after")
def validate_environment(self) -> Self: # type: ignore[valid-type]
"""Validate that api key and python package exists in environment."""
if not self.client:
if isinstance(self.cohere_api_key, SecretStr):
cohere_api_key: Optional[str] = self.cohere_api_key.get_secret_value()
else:
cohere_api_key = self.cohere_api_key
client_name = self.user_agent
self.client = cohere.Client(cohere_api_key, client_name=client_name)
return self
@model_validator(mode="after")
def validate_model_specified(self) -> Self: # type: ignore[valid-type]
"""Validate that model is specified."""
if not self.model:
raise ValueError(
"Did not find `model`! Please "
" pass `model` as a named parameter."
" Please check out"
" https://docs.cohere.com/reference/rerank"
" for available models."
)
return self
[docs]
def rerank(
self,
documents: Sequence[Union[str, Document, dict]],
query: str,
*,
rank_fields: Optional[Sequence[str]] = None,
model: Optional[str] = None,
top_n: Optional[int] = -1,
max_chunks_per_doc: Optional[int] = None,
) -> List[Dict[str, Any]]:
"""Returns an ordered list of documents ordered by their relevance to the provided query.
Args:
query: The query to use for reranking.
documents: A sequence of documents to rerank.
rank_fields: A sequence of keys to use for reranking.
model: The model to use for re-ranking. Default to self.model.
top_n : The number of results to return. If None returns all results.
Defaults to self.top_n.
max_chunks_per_doc : The maximum number of chunks derived from a document.
""" # noqa: E501
if len(documents) == 0: # to avoid empty api call
return []
docs = [
doc.page_content if isinstance(doc, Document) else doc for doc in documents
]
model = model or self.model
top_n = top_n if (top_n is None or top_n > 0) else self.top_n
results = self.client.rerank(
query=query,
documents=docs,
model=model,
top_n=top_n,
rank_fields=rank_fields,
max_chunks_per_doc=max_chunks_per_doc,
)
result_dicts = []
for res in results.results:
result_dicts.append(
{"index": res.index, "relevance_score": res.relevance_score}
)
return result_dicts
[docs]
def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""
Compress documents using Cohere's rerank API.
Args:
documents: A sequence of documents to compress.
query: The query to use for compressing the documents.
callbacks: Callbacks to run during the compression process.
Returns:
A sequence of compressed documents.
"""
compressed = []
for res in self.rerank(documents, query):
doc = documents[res["index"]]
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
doc_copy.metadata["relevance_score"] = res["relevance_score"]
compressed.append(doc_copy)
return compressed