langchain_community.agent_toolkits.powerbi.base ηζΊδ»£η
"""Power BI agent."""
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from langchain_core.callbacks import BaseCallbackManager
from langchain_core.language_models import BaseLanguageModel
from langchain_community.agent_toolkits.powerbi.prompt import (
POWERBI_PREFIX,
POWERBI_SUFFIX,
)
from langchain_community.agent_toolkits.powerbi.toolkit import PowerBIToolkit
from langchain_community.utilities.powerbi import PowerBIDataset
if TYPE_CHECKING:
from langchain.agents import AgentExecutor
[docs]
def create_pbi_agent(
llm: BaseLanguageModel,
toolkit: Optional[PowerBIToolkit] = None,
powerbi: Optional[PowerBIDataset] = None,
callback_manager: Optional[BaseCallbackManager] = None,
prefix: str = POWERBI_PREFIX,
suffix: str = POWERBI_SUFFIX,
format_instructions: Optional[str] = None,
examples: Optional[str] = None,
input_variables: Optional[List[str]] = None,
top_k: int = 10,
verbose: bool = False,
agent_executor_kwargs: Optional[Dict[str, Any]] = None,
**kwargs: Any,
) -> AgentExecutor:
"""Construct a Power BI agent from an LLM and tools.
Args:
llm: The language model to use.
toolkit: Optional. The Power BI toolkit. Default is None.
powerbi: Optional. The Power BI dataset. Default is None.
callback_manager: Optional. The callback manager. Default is None.
prefix: Optional. The prefix for the prompt. Default is POWERBI_PREFIX.
suffix: Optional. The suffix for the prompt. Default is POWERBI_SUFFIX.
format_instructions: Optional. The format instructions for the prompt.
Default is None.
examples: Optional. The examples for the prompt. Default is None.
input_variables: Optional. The input variables for the prompt. Default is None.
top_k: Optional. The top k for the prompt. Default is 10.
verbose: Optional. Whether to print verbose output. Default is False.
agent_executor_kwargs: Optional. The agent executor kwargs. Default is None.
kwargs: Any. Additional keyword arguments.
Returns:
The agent executor.
"""
from langchain.agents import AgentExecutor
from langchain.agents.mrkl.base import ZeroShotAgent
from langchain.chains.llm import LLMChain
if toolkit is None:
if powerbi is None:
raise ValueError("Must provide either a toolkit or powerbi dataset")
toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples)
tools = toolkit.get_tools()
tables = powerbi.table_names if powerbi else toolkit.powerbi.table_names
prompt_params = (
{"format_instructions": format_instructions}
if format_instructions is not None
else {}
)
agent = ZeroShotAgent(
llm_chain=LLMChain(
llm=llm,
prompt=ZeroShotAgent.create_prompt(
tools,
prefix=prefix.format(top_k=top_k).format(tables=tables),
suffix=suffix,
input_variables=input_variables,
**prompt_params,
),
callback_manager=callback_manager,
verbose=verbose,
),
allowed_tools=[tool.name for tool in tools],
**kwargs,
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tools,
callback_manager=callback_manager,
verbose=verbose,
**(agent_executor_kwargs or {}),
)