langchain_community.chains.openapi.response_chain ηζΊδ»£η
"""Response parser."""
import json
import re
from typing import Any
from langchain.chains.api.openapi.prompts import RESPONSE_TEMPLATE
from langchain.chains.llm import LLMChain
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import BaseOutputParser
from langchain_core.prompts.prompt import PromptTemplate
[docs]
class APIResponderOutputParser(BaseOutputParser):
"""Parse the response and error tags."""
def _load_json_block(self, serialized_block: str) -> str:
try:
response_content = json.loads(serialized_block, strict=False)
return response_content.get("response", "ERROR parsing response.")
except json.JSONDecodeError:
return "ERROR parsing response."
except:
raise
[docs]
def parse(self, llm_output: str) -> str:
"""Parse the response and error tags."""
json_match = re.search(r"```json(.*?)```", llm_output, re.DOTALL)
if json_match:
return self._load_json_block(json_match.group(1).strip())
else:
raise ValueError(f"No response found in output: {llm_output}.")
@property
def _type(self) -> str:
return "api_responder"
[docs]
class APIResponderChain(LLMChain):
"""Get the response parser."""
@classmethod
def is_lc_serializable(cls) -> bool:
return False
[docs]
@classmethod
def from_llm(
cls, llm: BaseLanguageModel, verbose: bool = True, **kwargs: Any
) -> LLMChain:
"""Get the response parser."""
output_parser = APIResponderOutputParser()
prompt = PromptTemplate(
template=RESPONSE_TEMPLATE,
output_parser=output_parser,
input_variables=["response", "instructions"],
)
return cls(prompt=prompt, llm=llm, verbose=verbose, **kwargs)