langchain_community.chat_models.human ηζΊδ»£η
"""ChatModel wrapper which returns user input as the response.."""
from io import StringIO
from typing import Any, Callable, Dict, List, Mapping, Optional
import yaml
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
)
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
BaseMessage,
HumanMessage,
_message_from_dict,
messages_to_dict,
)
from langchain_core.outputs import ChatGeneration, ChatResult
from pydantic import Field
from langchain_community.llms.utils import enforce_stop_tokens
def _display_messages(messages: List[BaseMessage]) -> None:
dict_messages = messages_to_dict(messages)
for message in dict_messages:
yaml_string = yaml.dump(
message,
default_flow_style=False,
sort_keys=False,
allow_unicode=True,
width=10000,
line_break=None,
)
print("\n", "======= start of message =======", "\n\n") # noqa: T201
print(yaml_string) # noqa: T201
print("======= end of message =======", "\n\n") # noqa: T201
def _collect_yaml_input(
messages: List[BaseMessage], stop: Optional[List[str]] = None
) -> BaseMessage:
"""Collects and returns user input as a single string."""
lines = []
while True:
line = input()
if not line.strip():
break
if stop and any(seq in line for seq in stop):
break
lines.append(line)
yaml_string = "\n".join(lines)
# Try to parse the input string as YAML
try:
message = _message_from_dict(yaml.safe_load(StringIO(yaml_string)))
if message is None:
return HumanMessage(content="")
if stop:
if isinstance(message.content, str):
message.content = enforce_stop_tokens(message.content, stop)
else:
raise ValueError("Cannot use when output is not a string.")
return message
except yaml.YAMLError:
raise ValueError("Invalid YAML string entered.")
except ValueError:
raise ValueError("Invalid message entered.")
[docs]
class HumanInputChatModel(BaseChatModel):
"""ChatModel which returns user input as the response."""
input_func: Callable = Field(default_factory=lambda: _collect_yaml_input)
message_func: Callable = Field(default_factory=lambda: _display_messages)
separator: str = "\n"
input_kwargs: Mapping[str, Any] = {}
message_kwargs: Mapping[str, Any] = {}
@property
def _identifying_params(self) -> Dict[str, Any]:
return {
"input_func": self.input_func.__name__,
"message_func": self.message_func.__name__,
}
@property
def _llm_type(self) -> str:
"""Returns the type of LLM."""
return "human-input-chat-model"
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""
Displays the messages to the user and returns their input as a response.
Args:
messages (List[BaseMessage]): The messages to be displayed to the user.
stop (Optional[List[str]]): A list of stop strings.
run_manager (Optional[CallbackManagerForLLMRun]): Currently not used.
Returns:
ChatResult: The user's input as a response.
"""
self.message_func(messages, **self.message_kwargs)
user_input = self.input_func(messages, stop=stop, **self.input_kwargs)
return ChatResult(generations=[ChatGeneration(message=user_input)])