# Copyright (c) 2024, Oracle and/or its affiliates.
"""Chat model for OCI data science model deployment endpoint."""
import importlib
import json
import logging
from operator import itemgetter
from typing import (
Any,
AsyncIterator,
Callable,
Dict,
Iterator,
List,
Literal,
Optional,
Sequence,
Type,
Union,
)
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
agenerate_from_stream,
generate_from_stream,
)
from langchain_core.messages import AIMessageChunk, BaseMessage, BaseMessageChunk
from langchain_core.output_parsers import (
JsonOutputParser,
PydanticOutputParser,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils.function_calling import convert_to_openai_tool
from pydantic import BaseModel, Field, model_validator
from langchain_community.llms.oci_data_science_model_deployment_endpoint import (
DEFAULT_MODEL_NAME,
BaseOCIModelDeployment,
)
logger = logging.getLogger(__name__)
DEFAULT_INFERENCE_ENDPOINT_CHAT = "/v1/chat/completions"
def _is_pydantic_class(obj: Any) -> bool:
return isinstance(obj, type) and issubclass(obj, BaseModel)
[docs]
class ChatOCIModelDeployment(BaseChatModel, BaseOCIModelDeployment):
"""OCI Data Science Model Deployment chat model integration.
Prerequisite
The OCI Model Deployment plugins are installable only on
python version 3.9 and above. If you're working inside the notebook,
try installing the python 3.10 based conda pack and running the
following setup.
Setup:
Install ``oracle-ads`` and ``langchain-openai``.
.. code-block:: bash
pip install -U oracle-ads langchain-openai
Use `ads.set_auth()` to configure authentication.
For example, to use OCI resource_principal for authentication:
.. code-block:: python
import ads
ads.set_auth("resource_principal")
For more details on authentication, see:
https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html
Make sure to have the required policies to access the OCI Data
Science Model Deployment endpoint. See:
https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm
Key init args - completion params:
endpoint: str
The OCI model deployment endpoint.
temperature: float
Sampling temperature.
max_tokens: Optional[int]
Max number of tokens to generate.
Key init args β client params:
auth: dict
ADS auth dictionary for OCI authentication.
default_headers: Optional[Dict]
The headers to be added to the Model Deployment request.
Instantiate:
.. code-block:: python
from langchain_community.chat_models import ChatOCIModelDeployment
chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<ocid>/predict",
model="odsc-llm", # this is the default model name if deployed with AQUA
streaming=True,
max_retries=3,
model_kwargs={
"max_token": 512,
"temperature": 0.2,
# other model parameters ...
},
default_headers={
"route": "/v1/chat/completions",
# other request headers ...
},
)
Invocation:
.. code-block:: python
messages = [
("system", "Translate the user sentence to French."),
("human", "Hello World!"),
]
chat.invoke(messages)
.. code-block:: python
AIMessage(
content='Bonjour le monde!',
response_metadata={
'token_usage': {
'prompt_tokens': 40,
'total_tokens': 50,
'completion_tokens': 10
},
'model_name': 'odsc-llm',
'system_fingerprint': '',
'finish_reason': 'stop'
},
id='run-cbed62da-e1b3-4abd-9df3-ec89d69ca012-0'
)
Streaming:
.. code-block:: python
for chunk in chat.stream(messages):
print(chunk)
.. code-block:: python
content='' id='run-02c6-c43f-42de'
content='\n' id='run-02c6-c43f-42de'
content='B' id='run-02c6-c43f-42de'
content='on' id='run-02c6-c43f-42de'
content='j' id='run-02c6-c43f-42de'
content='our' id='run-02c6-c43f-42de'
content=' le' id='run-02c6-c43f-42de'
content=' monde' id='run-02c6-c43f-42de'
content='!' id='run-02c6-c43f-42de'
content='' response_metadata={'finish_reason': 'stop'} id='run-02c6-c43f-42de'
Async:
.. code-block:: python
await chat.ainvoke(messages)
# stream:
# async for chunk in (await chat.astream(messages))
.. code-block:: python
AIMessage(
content='Bonjour le monde!',
response_metadata={'finish_reason': 'stop'},
id='run-8657a105-96b7-4bb6-b98e-b69ca420e5d1-0'
)
Structured output:
.. code-block:: python
from typing import Optional
from pydantic import BaseModel, Field
class Joke(BaseModel):
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
structured_llm = chat.with_structured_output(Joke, method="json_mode")
structured_llm.invoke(
"Tell me a joke about cats, "
"respond in JSON with `setup` and `punchline` keys"
)
.. code-block:: python
Joke(
setup='Why did the cat get stuck in the tree?',
punchline='Because it was chasing its tail!'
)
See ``ChatOCIModelDeployment.with_structured_output()`` for more.
Customized Usage:
You can inherit from base class and overwrite the `_process_response`,
`_process_stream_response`, `_construct_json_body` for customized usage.
.. code-block:: python
class MyChatModel(ChatOCIModelDeployment):
def _process_stream_response(self, response_json: dict) -> ChatGenerationChunk:
print("My customized streaming result handler.")
return GenerationChunk(...)
def _process_response(self, response_json:dict) -> ChatResult:
print("My customized output handler.")
return ChatResult(...)
def _construct_json_body(self, messages: list, params: dict) -> dict:
print("My customized payload handler.")
return {
"messages": messages,
**params,
}
chat = MyChatModel(
endpoint=f"https://modeldeployment.<region>.oci.customer-oci.com/{ocid}/predict",
model="odsc-llm",
}
chat.invoke("tell me a joke")
Response metadata
.. code-block:: python
ai_msg = chat.invoke(messages)
ai_msg.response_metadata
.. code-block:: python
{
'token_usage': {
'prompt_tokens': 40,
'total_tokens': 50,
'completion_tokens': 10
},
'model_name': 'odsc-llm',
'system_fingerprint': '',
'finish_reason': 'stop'
}
""" # noqa: E501
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the model."""
model: str = DEFAULT_MODEL_NAME
"""The name of the model."""
stop: Optional[List[str]] = None
"""Stop words to use when generating. Model output is cut off
at the first occurrence of any of these substrings."""
@model_validator(mode="before")
@classmethod
def validate_openai(cls, values: Any) -> Any:
"""Checks if langchain_openai is installed."""
if not importlib.util.find_spec("langchain_openai"):
raise ImportError(
"Could not import langchain_openai package. "
"Please install it with `pip install langchain_openai`."
)
return values
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "oci_model_depolyment_chat_endpoint"
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
_model_kwargs = self.model_kwargs or {}
return {
**{"endpoint": self.endpoint, "model_kwargs": _model_kwargs},
**self._default_params,
}
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters."""
return {
"model": self.model,
"stop": self.stop,
"stream": self.streaming,
}
def _headers(
self, is_async: Optional[bool] = False, body: Optional[dict] = None
) -> Dict:
"""Construct and return the headers for a request.
Args:
is_async (bool, optional): Indicates if the request is asynchronous.
Defaults to `False`.
body (optional): The request body to be included in the headers if
the request is asynchronous.
Returns:
Dict: A dictionary containing the appropriate headers for the request.
"""
return {
"route": DEFAULT_INFERENCE_ENDPOINT_CHAT,
**super()._headers(is_async=is_async, body=body),
}
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Call out to an OCI Model Deployment Online endpoint.
Args:
messages: The messages in the conversation with the chat model.
stop: Optional list of stop words to use when generating.
Returns:
LangChain ChatResult
Raises:
RuntimeError:
Raise when invoking endpoint fails.
Example:
.. code-block:: python
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "Hello World!"),
]
response = chat.invoke(messages)
""" # noqa: E501
if self.streaming:
stream_iter = self._stream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return generate_from_stream(stream_iter)
requests_kwargs = kwargs.pop("requests_kwargs", {})
params = self._invocation_params(stop, **kwargs)
body = self._construct_json_body(messages, params)
res = self.completion_with_retry(
data=body, run_manager=run_manager, **requests_kwargs
)
return self._process_response(res.json())
def _stream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[ChatGenerationChunk]:
"""Stream OCI Data Science Model Deployment endpoint on given messages.
Args:
messages (List[BaseMessage]):
The messagaes to pass into the model.
stop (List[str], Optional):
List of stop words to use when generating.
kwargs:
requests_kwargs:
Additional ``**kwargs`` to pass to requests.post
Returns:
An iterator of ChatGenerationChunk.
Raises:
RuntimeError:
Raise when invoking endpoint fails.
Example:
.. code-block:: python
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "Hello World!"),
]
chunk_iter = chat.stream(messages)
""" # noqa: E501
requests_kwargs = kwargs.pop("requests_kwargs", {})
self.streaming = True
params = self._invocation_params(stop, **kwargs)
body = self._construct_json_body(messages, params) # request json body
response = self.completion_with_retry(
data=body, run_manager=run_manager, stream=True, **requests_kwargs
)
default_chunk_class = AIMessageChunk
for line in self._parse_stream(response.iter_lines()):
chunk = self._handle_sse_line(line, default_chunk_class)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
"""Asynchronously call out to OCI Data Science Model Deployment
endpoint on given messages.
Args:
messages (List[BaseMessage]):
The messagaes to pass into the model.
stop (List[str], Optional):
List of stop words to use when generating.
kwargs:
requests_kwargs:
Additional ``**kwargs`` to pass to requests.post
Returns:
LangChain ChatResult.
Raises:
ValueError:
Raise when invoking endpoint fails.
Example:
.. code-block:: python
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
resp = await chat.ainvoke(messages)
""" # noqa: E501
if self.streaming:
stream_iter = self._astream(
messages, stop=stop, run_manager=run_manager, **kwargs
)
return await agenerate_from_stream(stream_iter)
requests_kwargs = kwargs.pop("requests_kwargs", {})
params = self._invocation_params(stop, **kwargs)
body = self._construct_json_body(messages, params)
response = await self.acompletion_with_retry(
data=body,
run_manager=run_manager,
**requests_kwargs,
)
return self._process_response(response)
async def _astream(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[ChatGenerationChunk]:
"""Asynchronously streaming OCI Data Science Model Deployment
endpoint on given messages.
Args:
messages (List[BaseMessage]):
The messagaes to pass into the model.
stop (List[str], Optional):
List of stop words to use when generating.
kwargs:
requests_kwargs:
Additional ``**kwargs`` to pass to requests.post
Returns:
An Asynciterator of ChatGenerationChunk.
Raises:
ValueError:
Raise when invoking endpoint fails.
Example:
.. code-block:: python
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
chunk_iter = await chat.astream(messages)
""" # noqa: E501
requests_kwargs = kwargs.pop("requests_kwargs", {})
self.streaming = True
params = self._invocation_params(stop, **kwargs)
body = self._construct_json_body(messages, params) # request json body
default_chunk_class = AIMessageChunk
async for line in await self.acompletion_with_retry(
data=body, run_manager=run_manager, stream=True, **requests_kwargs
):
chunk = self._handle_sse_line(line, default_chunk_class)
if run_manager:
await run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
[docs]
def with_structured_output(
self,
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
*,
method: Literal["json_mode"] = "json_mode",
include_raw: bool = False,
**kwargs: Any,
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
"""Model wrapper that returns outputs formatted to match the given schema.
Args:
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
then the model output will be an object of that class. If a dict then
the model output will be a dict. With a Pydantic class the returned
attributes will be validated, whereas with a dict they will not be. If
`method` is "function_calling" and `schema` is a dict, then the dict
must match the OpenAI function-calling spec.
method: The method for steering model generation, currently only support
for "json_mode". If "json_mode" then JSON mode will be used. Note that
if using "json_mode" then you must include instructions for formatting
the output into the desired schema into the model call.
include_raw: If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys "raw", "parsed", and "parsing_error".
Returns:
A Runnable that takes any ChatModel input and returns as output:
If include_raw is True then a dict with keys:
raw: BaseMessage
parsed: Optional[_DictOrPydantic]
parsing_error: Optional[BaseException]
If include_raw is False then just _DictOrPydantic is returned,
where _DictOrPydantic depends on the schema:
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
class.
If schema is a dict then _DictOrPydantic is a dict.
""" # noqa: E501
if kwargs:
raise ValueError(f"Received unsupported arguments {kwargs}")
is_pydantic_schema = _is_pydantic_class(schema)
if method == "json_mode":
llm = self.bind(response_format={"type": "json_object"})
output_parser = (
PydanticOutputParser(pydantic_object=schema) # type: ignore[type-var, arg-type]
if is_pydantic_schema
else JsonOutputParser()
)
else:
raise ValueError(
f"Unrecognized method argument. Expected `json_mode`."
f"Received: `{method}`."
)
if include_raw:
parser_assign = RunnablePassthrough.assign(
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
)
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
parser_with_fallback = parser_assign.with_fallbacks(
[parser_none], exception_key="parsing_error"
)
return RunnableMap(raw=llm) | parser_with_fallback
else:
return llm | output_parser
def _invocation_params(self, stop: Optional[List[str]], **kwargs: Any) -> dict:
"""Combines the invocation parameters with default parameters."""
params = self._default_params
_model_kwargs = self.model_kwargs or {}
params["stop"] = stop or params.get("stop", [])
return {**params, **_model_kwargs, **kwargs}
def _handle_sse_line(
self, line: str, default_chunk_cls: Type[BaseMessageChunk] = AIMessageChunk
) -> ChatGenerationChunk:
"""Handle a single Server-Sent Events (SSE) line and process it into
a chat generation chunk.
Args:
line (str): A single line from the SSE stream in string format.
default_chunk_cls (AIMessageChunk): The default class for message
chunks to be used during the processing of the stream response.
Returns:
ChatGenerationChunk: The processed chat generation chunk. If an error
occurs, an empty `ChatGenerationChunk` is returned.
"""
try:
obj = json.loads(line)
return self._process_stream_response(obj, default_chunk_cls)
except Exception as e:
logger.debug(f"Error occurs when processing line={line}: {str(e)}")
return ChatGenerationChunk(message=AIMessageChunk(content=""))
def _construct_json_body(self, messages: list, params: dict) -> dict:
"""Constructs the request body as a dictionary (JSON).
Args:
messages (list): A list of message objects to be included in the
request body.
params (dict): A dictionary of additional parameters to be included
in the request body.
Returns:
dict: A dictionary representing the JSON request body, including
converted messages and additional parameters.
"""
from langchain_openai.chat_models.base import _convert_message_to_dict
return {
"messages": [_convert_message_to_dict(m) for m in messages],
**params,
}
def _process_stream_response(
self,
response_json: dict,
default_chunk_cls: Type[BaseMessageChunk] = AIMessageChunk,
) -> ChatGenerationChunk:
"""Formats streaming response in OpenAI spec.
Args:
response_json (dict): The JSON response from the streaming endpoint.
default_chunk_cls (type, optional): The default class to use for
creating message chunks. Defaults to `AIMessageChunk`.
Returns:
ChatGenerationChunk: An object containing the processed message
chunk and any relevant generation information such as finish
reason and usage.
Raises:
ValueError: If the response JSON is not well-formed or does not
contain the expected structure.
"""
from langchain_openai.chat_models.base import _convert_delta_to_message_chunk
try:
choice = response_json["choices"][0]
if not isinstance(choice, dict):
raise TypeError("Endpoint response is not well formed.")
except (KeyError, IndexError, TypeError) as e:
raise ValueError(
"Error while formatting response payload for chat model of type"
) from e
chunk = _convert_delta_to_message_chunk(choice["delta"], default_chunk_cls)
default_chunk_cls = chunk.__class__
finish_reason = choice.get("finish_reason")
usage = choice.get("usage")
gen_info = {}
if finish_reason is not None:
gen_info.update({"finish_reason": finish_reason})
if usage is not None:
gen_info.update({"usage": usage})
return ChatGenerationChunk(
message=chunk, generation_info=gen_info if gen_info else None
)
def _process_response(self, response_json: dict) -> ChatResult:
"""Formats response in OpenAI spec.
Args:
response_json (dict): The JSON response from the chat model endpoint.
Returns:
ChatResult: An object containing the list of `ChatGeneration` objects
and additional LLM output information.
Raises:
ValueError: If the response JSON is not well-formed or does not
contain the expected structure.
"""
from langchain_openai.chat_models.base import _convert_dict_to_message
generations = []
try:
choices = response_json["choices"]
if not isinstance(choices, list):
raise TypeError("Endpoint response is not well formed.")
except (KeyError, TypeError) as e:
raise ValueError(
"Error while formatting response payload for chat model of type"
) from e
for choice in choices:
message = _convert_dict_to_message(choice["message"])
generation_info = {"finish_reason": choice.get("finish_reason")}
if "logprobs" in choice:
generation_info["logprobs"] = choice["logprobs"]
gen = ChatGeneration(
message=message,
generation_info=generation_info,
)
generations.append(gen)
token_usage = response_json.get("usage", {})
llm_output = {
"token_usage": token_usage,
"model_name": self.model,
"system_fingerprint": response_json.get("system_fingerprint", ""),
}
return ChatResult(generations=generations, llm_output=llm_output)
[docs]
class ChatOCIModelDeploymentVLLM(ChatOCIModelDeployment):
"""OCI large language chat models deployed with vLLM.
To use, you must provide the model HTTP endpoint from your deployed
model, e.g. https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict.
To authenticate, `oracle-ads` has been used to automatically load
credentials: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html
Make sure to have the required policies to access the OCI Data
Science Model Deployment endpoint. See:
https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOCIModelDeploymentVLLM
chat = ChatOCIModelDeploymentVLLM(
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict",
frequency_penalty=0.1,
max_tokens=512,
temperature=0.2,
top_p=1.0,
# other model parameters...
)
""" # noqa: E501
frequency_penalty: float = 0.0
"""Penalizes repeated tokens according to frequency. Between 0 and 1."""
logit_bias: Optional[Dict[str, float]] = None
"""Adjust the probability of specific tokens being generated."""
max_tokens: Optional[int] = 256
"""The maximum number of tokens to generate in the completion."""
n: int = 1
"""Number of output sequences to return for the given prompt."""
presence_penalty: float = 0.0
"""Penalizes repeated tokens. Between 0 and 1."""
temperature: float = 0.2
"""What sampling temperature to use."""
top_p: float = 1.0
"""Total probability mass of tokens to consider at each step."""
best_of: Optional[int] = None
"""Generates best_of completions server-side and returns the "best"
(the one with the highest log probability per token).
"""
use_beam_search: Optional[bool] = False
"""Whether to use beam search instead of sampling."""
top_k: Optional[int] = -1
"""Number of most likely tokens to consider at each step."""
min_p: Optional[float] = 0.0
"""Float that represents the minimum probability for a token to be considered.
Must be in [0,1]. 0 to disable this."""
repetition_penalty: Optional[float] = 1.0
"""Float that penalizes new tokens based on their frequency in the
generated text. Values > 1 encourage the model to use new tokens."""
length_penalty: Optional[float] = 1.0
"""Float that penalizes sequences based on their length. Used only
when `use_beam_search` is True."""
early_stopping: Optional[bool] = False
"""Controls the stopping condition for beam search. It accepts the
following values: `True`, where the generation stops as soon as there
are `best_of` complete candidates; `False`, where a heuristic is applied
to the generation stops when it is very unlikely to find better candidates;
`never`, where the beam search procedure only stops where there cannot be
better candidates (canonical beam search algorithm)."""
ignore_eos: Optional[bool] = False
"""Whether to ignore the EOS token and continue generating tokens after
the EOS token is generated."""
min_tokens: Optional[int] = 0
"""Minimum number of tokens to generate per output sequence before
EOS or stop_token_ids can be generated"""
stop_token_ids: Optional[List[int]] = None
"""List of tokens that stop the generation when they are generated.
The returned output will contain the stop tokens unless the stop tokens
are special tokens."""
skip_special_tokens: Optional[bool] = True
"""Whether to skip special tokens in the output. Defaults to True."""
spaces_between_special_tokens: Optional[bool] = True
"""Whether to add spaces between special tokens in the output.
Defaults to True."""
tool_choice: Optional[str] = None
"""Whether to use tool calling.
Defaults to None, tool calling is disabled.
Tool calling requires model support and the vLLM to be configured
with `--tool-call-parser`.
Set this to `auto` for the model to make tool calls automatically.
Set this to `required` to force the model to always call one or more tools.
"""
chat_template: Optional[str] = None
"""Use customized chat template.
Defaults to None. The chat template from the tokenizer will be used.
"""
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "oci_model_depolyment_chat_endpoint_vllm"
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters."""
params = {
"model": self.model,
"stop": self.stop,
"stream": self.streaming,
}
for attr_name in self._get_model_params():
try:
value = getattr(self, attr_name)
if value is not None:
params.update({attr_name: value})
except Exception:
pass
return params
def _get_model_params(self) -> List[str]:
"""Gets the name of model parameters."""
return [
"best_of",
"early_stopping",
"frequency_penalty",
"ignore_eos",
"length_penalty",
"logit_bias",
"logprobs",
"max_tokens",
"min_p",
"min_tokens",
"n",
"presence_penalty",
"repetition_penalty",
"skip_special_tokens",
"spaces_between_special_tokens",
"stop_token_ids",
"temperature",
"top_k",
"top_p",
"use_beam_search",
"tool_choice",
"chat_template",
]
[docs]
class ChatOCIModelDeploymentTGI(ChatOCIModelDeployment):
"""OCI large language chat models deployed with Text Generation Inference.
To use, you must provide the model HTTP endpoint from your deployed
model, e.g. https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict.
To authenticate, `oracle-ads` has been used to automatically load
credentials: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html
Make sure to have the required policies to access the OCI Data
Science Model Deployment endpoint. See:
https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint
Example:
.. code-block:: python
from langchain_community.chat_models import ChatOCIModelDeploymentTGI
chat = ChatOCIModelDeploymentTGI(
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict",
max_token=512,
temperature=0.2,
frequency_penalty=0.1,
seed=42,
# other model parameters...
)
""" # noqa: E501
frequency_penalty: Optional[float] = None
"""Penalizes repeated tokens according to frequency. Between 0 and 1."""
logit_bias: Optional[Dict[str, float]] = None
"""Adjust the probability of specific tokens being generated."""
logprobs: Optional[bool] = None
"""Whether to return log probabilities of the output tokens or not."""
max_tokens: int = 256
"""The maximum number of tokens to generate in the completion."""
n: int = 1
"""Number of output sequences to return for the given prompt."""
presence_penalty: Optional[float] = None
"""Penalizes repeated tokens. Between 0 and 1."""
seed: Optional[int] = None
"""To sample deterministically,"""
temperature: float = 0.2
"""What sampling temperature to use."""
top_p: Optional[float] = None
"""Total probability mass of tokens to consider at each step."""
top_logprobs: Optional[int] = None
"""An integer between 0 and 5 specifying the number of most
likely tokens to return at each token position, each with an
associated log probability. logprobs must be set to true if
this parameter is used."""
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "oci_model_depolyment_chat_endpoint_tgi"
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters."""
params = {
"model": self.model,
"stop": self.stop,
"stream": self.streaming,
}
for attr_name in self._get_model_params():
try:
value = getattr(self, attr_name)
if value is not None:
params.update({attr_name: value})
except Exception:
pass
return params
def _get_model_params(self) -> List[str]:
"""Gets the name of model parameters."""
return [
"frequency_penalty",
"logit_bias",
"logprobs",
"max_tokens",
"n",
"presence_penalty",
"seed",
"temperature",
"top_k",
"top_p",
"top_logprobs",
]