langchain_community.chat_models.oci_data_science ηš„ζΊδ»£η 

# Copyright (c) 2024, Oracle and/or its affiliates.

"""Chat model for OCI data science model deployment endpoint."""

import importlib
import json
import logging
from operator import itemgetter
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Literal,
    Optional,
    Sequence,
    Type,
    Union,
)

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import AIMessageChunk, BaseMessage, BaseMessageChunk
from langchain_core.output_parsers import (
    JsonOutputParser,
    PydanticOutputParser,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils.function_calling import convert_to_openai_tool
from pydantic import BaseModel, Field, model_validator

from langchain_community.llms.oci_data_science_model_deployment_endpoint import (
    DEFAULT_MODEL_NAME,
    BaseOCIModelDeployment,
)

logger = logging.getLogger(__name__)
DEFAULT_INFERENCE_ENDPOINT_CHAT = "/v1/chat/completions"


def _is_pydantic_class(obj: Any) -> bool:
    return isinstance(obj, type) and issubclass(obj, BaseModel)


[docs] class ChatOCIModelDeployment(BaseChatModel, BaseOCIModelDeployment): """OCI Data Science Model Deployment chat model integration. Prerequisite The OCI Model Deployment plugins are installable only on python version 3.9 and above. If you're working inside the notebook, try installing the python 3.10 based conda pack and running the following setup. Setup: Install ``oracle-ads`` and ``langchain-openai``. .. code-block:: bash pip install -U oracle-ads langchain-openai Use `ads.set_auth()` to configure authentication. For example, to use OCI resource_principal for authentication: .. code-block:: python import ads ads.set_auth("resource_principal") For more details on authentication, see: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html Make sure to have the required policies to access the OCI Data Science Model Deployment endpoint. See: https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm Key init args - completion params: endpoint: str The OCI model deployment endpoint. temperature: float Sampling temperature. max_tokens: Optional[int] Max number of tokens to generate. Key init args β€” client params: auth: dict ADS auth dictionary for OCI authentication. default_headers: Optional[Dict] The headers to be added to the Model Deployment request. Instantiate: .. code-block:: python from langchain_community.chat_models import ChatOCIModelDeployment chat = ChatOCIModelDeployment( endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<ocid>/predict", model="odsc-llm", # this is the default model name if deployed with AQUA streaming=True, max_retries=3, model_kwargs={ "max_token": 512, "temperature": 0.2, # other model parameters ... }, default_headers={ "route": "/v1/chat/completions", # other request headers ... }, ) Invocation: .. code-block:: python messages = [ ("system", "Translate the user sentence to French."), ("human", "Hello World!"), ] chat.invoke(messages) .. code-block:: python AIMessage( content='Bonjour le monde!', response_metadata={ 'token_usage': { 'prompt_tokens': 40, 'total_tokens': 50, 'completion_tokens': 10 }, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop' }, id='run-cbed62da-e1b3-4abd-9df3-ec89d69ca012-0' ) Streaming: .. code-block:: python for chunk in chat.stream(messages): print(chunk) .. code-block:: python content='' id='run-02c6-c43f-42de' content='\n' id='run-02c6-c43f-42de' content='B' id='run-02c6-c43f-42de' content='on' id='run-02c6-c43f-42de' content='j' id='run-02c6-c43f-42de' content='our' id='run-02c6-c43f-42de' content=' le' id='run-02c6-c43f-42de' content=' monde' id='run-02c6-c43f-42de' content='!' id='run-02c6-c43f-42de' content='' response_metadata={'finish_reason': 'stop'} id='run-02c6-c43f-42de' Async: .. code-block:: python await chat.ainvoke(messages) # stream: # async for chunk in (await chat.astream(messages)) .. code-block:: python AIMessage( content='Bonjour le monde!', response_metadata={'finish_reason': 'stop'}, id='run-8657a105-96b7-4bb6-b98e-b69ca420e5d1-0' ) Structured output: .. code-block:: python from typing import Optional from pydantic import BaseModel, Field class Joke(BaseModel): setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") structured_llm = chat.with_structured_output(Joke, method="json_mode") structured_llm.invoke( "Tell me a joke about cats, " "respond in JSON with `setup` and `punchline` keys" ) .. code-block:: python Joke( setup='Why did the cat get stuck in the tree?', punchline='Because it was chasing its tail!' ) See ``ChatOCIModelDeployment.with_structured_output()`` for more. Customized Usage: You can inherit from base class and overwrite the `_process_response`, `_process_stream_response`, `_construct_json_body` for customized usage. .. code-block:: python class MyChatModel(ChatOCIModelDeployment): def _process_stream_response(self, response_json: dict) -> ChatGenerationChunk: print("My customized streaming result handler.") return GenerationChunk(...) def _process_response(self, response_json:dict) -> ChatResult: print("My customized output handler.") return ChatResult(...) def _construct_json_body(self, messages: list, params: dict) -> dict: print("My customized payload handler.") return { "messages": messages, **params, } chat = MyChatModel( endpoint=f"https://modeldeployment.<region>.oci.customer-oci.com/{ocid}/predict", model="odsc-llm", } chat.invoke("tell me a joke") Response metadata .. code-block:: python ai_msg = chat.invoke(messages) ai_msg.response_metadata .. code-block:: python { 'token_usage': { 'prompt_tokens': 40, 'total_tokens': 50, 'completion_tokens': 10 }, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop' } """ # noqa: E501 model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Keyword arguments to pass to the model.""" model: str = DEFAULT_MODEL_NAME """The name of the model.""" stop: Optional[List[str]] = None """Stop words to use when generating. Model output is cut off at the first occurrence of any of these substrings.""" @model_validator(mode="before") @classmethod def validate_openai(cls, values: Any) -> Any: """Checks if langchain_openai is installed.""" if not importlib.util.find_spec("langchain_openai"): raise ImportError( "Could not import langchain_openai package. " "Please install it with `pip install langchain_openai`." ) return values @property def _llm_type(self) -> str: """Return type of llm.""" return "oci_model_depolyment_chat_endpoint" @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"endpoint": self.endpoint, "model_kwargs": _model_kwargs}, **self._default_params, } @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters.""" return { "model": self.model, "stop": self.stop, "stream": self.streaming, } def _headers( self, is_async: Optional[bool] = False, body: Optional[dict] = None ) -> Dict: """Construct and return the headers for a request. Args: is_async (bool, optional): Indicates if the request is asynchronous. Defaults to `False`. body (optional): The request body to be included in the headers if the request is asynchronous. Returns: Dict: A dictionary containing the appropriate headers for the request. """ return { "route": DEFAULT_INFERENCE_ENDPOINT_CHAT, **super()._headers(is_async=is_async, body=body), } def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Call out to an OCI Model Deployment Online endpoint. Args: messages: The messages in the conversation with the chat model. stop: Optional list of stop words to use when generating. Returns: LangChain ChatResult Raises: RuntimeError: Raise when invoking endpoint fails. Example: .. code-block:: python messages = [ ( "system", "You are a helpful assistant that translates English to French. Translate the user sentence.", ), ("human", "Hello World!"), ] response = chat.invoke(messages) """ # noqa: E501 if self.streaming: stream_iter = self._stream( messages, stop=stop, run_manager=run_manager, **kwargs ) return generate_from_stream(stream_iter) requests_kwargs = kwargs.pop("requests_kwargs", {}) params = self._invocation_params(stop, **kwargs) body = self._construct_json_body(messages, params) res = self.completion_with_retry( data=body, run_manager=run_manager, **requests_kwargs ) return self._process_response(res.json()) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: """Stream OCI Data Science Model Deployment endpoint on given messages. Args: messages (List[BaseMessage]): The messagaes to pass into the model. stop (List[str], Optional): List of stop words to use when generating. kwargs: requests_kwargs: Additional ``**kwargs`` to pass to requests.post Returns: An iterator of ChatGenerationChunk. Raises: RuntimeError: Raise when invoking endpoint fails. Example: .. code-block:: python messages = [ ( "system", "You are a helpful assistant that translates English to French. Translate the user sentence.", ), ("human", "Hello World!"), ] chunk_iter = chat.stream(messages) """ # noqa: E501 requests_kwargs = kwargs.pop("requests_kwargs", {}) self.streaming = True params = self._invocation_params(stop, **kwargs) body = self._construct_json_body(messages, params) # request json body response = self.completion_with_retry( data=body, run_manager=run_manager, stream=True, **requests_kwargs ) default_chunk_class = AIMessageChunk for line in self._parse_stream(response.iter_lines()): chunk = self._handle_sse_line(line, default_chunk_class) if run_manager: run_manager.on_llm_new_token(chunk.text, chunk=chunk) yield chunk async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: """Asynchronously call out to OCI Data Science Model Deployment endpoint on given messages. Args: messages (List[BaseMessage]): The messagaes to pass into the model. stop (List[str], Optional): List of stop words to use when generating. kwargs: requests_kwargs: Additional ``**kwargs`` to pass to requests.post Returns: LangChain ChatResult. Raises: ValueError: Raise when invoking endpoint fails. Example: .. code-block:: python messages = [ ( "system", "You are a helpful assistant that translates English to French. Translate the user sentence.", ), ("human", "I love programming."), ] resp = await chat.ainvoke(messages) """ # noqa: E501 if self.streaming: stream_iter = self._astream( messages, stop=stop, run_manager=run_manager, **kwargs ) return await agenerate_from_stream(stream_iter) requests_kwargs = kwargs.pop("requests_kwargs", {}) params = self._invocation_params(stop, **kwargs) body = self._construct_json_body(messages, params) response = await self.acompletion_with_retry( data=body, run_manager=run_manager, **requests_kwargs, ) return self._process_response(response) async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: """Asynchronously streaming OCI Data Science Model Deployment endpoint on given messages. Args: messages (List[BaseMessage]): The messagaes to pass into the model. stop (List[str], Optional): List of stop words to use when generating. kwargs: requests_kwargs: Additional ``**kwargs`` to pass to requests.post Returns: An Asynciterator of ChatGenerationChunk. Raises: ValueError: Raise when invoking endpoint fails. Example: .. code-block:: python messages = [ ( "system", "You are a helpful assistant that translates English to French. Translate the user sentence.", ), ("human", "I love programming."), ] chunk_iter = await chat.astream(messages) """ # noqa: E501 requests_kwargs = kwargs.pop("requests_kwargs", {}) self.streaming = True params = self._invocation_params(stop, **kwargs) body = self._construct_json_body(messages, params) # request json body default_chunk_class = AIMessageChunk async for line in await self.acompletion_with_retry( data=body, run_manager=run_manager, stream=True, **requests_kwargs ): chunk = self._handle_sse_line(line, default_chunk_class) if run_manager: await run_manager.on_llm_new_token(chunk.text, chunk=chunk) yield chunk
[docs] def with_structured_output( self, schema: Optional[Union[Dict, Type[BaseModel]]] = None, *, method: Literal["json_mode"] = "json_mode", include_raw: bool = False, **kwargs: Any, ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: """Model wrapper that returns outputs formatted to match the given schema. Args: schema: The output schema as a dict or a Pydantic class. If a Pydantic class then the model output will be an object of that class. If a dict then the model output will be a dict. With a Pydantic class the returned attributes will be validated, whereas with a dict they will not be. If `method` is "function_calling" and `schema` is a dict, then the dict must match the OpenAI function-calling spec. method: The method for steering model generation, currently only support for "json_mode". If "json_mode" then JSON mode will be used. Note that if using "json_mode" then you must include instructions for formatting the output into the desired schema into the model call. include_raw: If False then only the parsed structured output is returned. If an error occurs during model output parsing it will be raised. If True then both the raw model response (a BaseMessage) and the parsed model response will be returned. If an error occurs during output parsing it will be caught and returned as well. The final output is always a dict with keys "raw", "parsed", and "parsing_error". Returns: A Runnable that takes any ChatModel input and returns as output: If include_raw is True then a dict with keys: raw: BaseMessage parsed: Optional[_DictOrPydantic] parsing_error: Optional[BaseException] If include_raw is False then just _DictOrPydantic is returned, where _DictOrPydantic depends on the schema: If schema is a Pydantic class then _DictOrPydantic is the Pydantic class. If schema is a dict then _DictOrPydantic is a dict. """ # noqa: E501 if kwargs: raise ValueError(f"Received unsupported arguments {kwargs}") is_pydantic_schema = _is_pydantic_class(schema) if method == "json_mode": llm = self.bind(response_format={"type": "json_object"}) output_parser = ( PydanticOutputParser(pydantic_object=schema) # type: ignore[type-var, arg-type] if is_pydantic_schema else JsonOutputParser() ) else: raise ValueError( f"Unrecognized method argument. Expected `json_mode`." f"Received: `{method}`." ) if include_raw: parser_assign = RunnablePassthrough.assign( parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None ) parser_none = RunnablePassthrough.assign(parsed=lambda _: None) parser_with_fallback = parser_assign.with_fallbacks( [parser_none], exception_key="parsing_error" ) return RunnableMap(raw=llm) | parser_with_fallback else: return llm | output_parser
def _invocation_params(self, stop: Optional[List[str]], **kwargs: Any) -> dict: """Combines the invocation parameters with default parameters.""" params = self._default_params _model_kwargs = self.model_kwargs or {} params["stop"] = stop or params.get("stop", []) return {**params, **_model_kwargs, **kwargs} def _handle_sse_line( self, line: str, default_chunk_cls: Type[BaseMessageChunk] = AIMessageChunk ) -> ChatGenerationChunk: """Handle a single Server-Sent Events (SSE) line and process it into a chat generation chunk. Args: line (str): A single line from the SSE stream in string format. default_chunk_cls (AIMessageChunk): The default class for message chunks to be used during the processing of the stream response. Returns: ChatGenerationChunk: The processed chat generation chunk. If an error occurs, an empty `ChatGenerationChunk` is returned. """ try: obj = json.loads(line) return self._process_stream_response(obj, default_chunk_cls) except Exception as e: logger.debug(f"Error occurs when processing line={line}: {str(e)}") return ChatGenerationChunk(message=AIMessageChunk(content="")) def _construct_json_body(self, messages: list, params: dict) -> dict: """Constructs the request body as a dictionary (JSON). Args: messages (list): A list of message objects to be included in the request body. params (dict): A dictionary of additional parameters to be included in the request body. Returns: dict: A dictionary representing the JSON request body, including converted messages and additional parameters. """ from langchain_openai.chat_models.base import _convert_message_to_dict return { "messages": [_convert_message_to_dict(m) for m in messages], **params, } def _process_stream_response( self, response_json: dict, default_chunk_cls: Type[BaseMessageChunk] = AIMessageChunk, ) -> ChatGenerationChunk: """Formats streaming response in OpenAI spec. Args: response_json (dict): The JSON response from the streaming endpoint. default_chunk_cls (type, optional): The default class to use for creating message chunks. Defaults to `AIMessageChunk`. Returns: ChatGenerationChunk: An object containing the processed message chunk and any relevant generation information such as finish reason and usage. Raises: ValueError: If the response JSON is not well-formed or does not contain the expected structure. """ from langchain_openai.chat_models.base import _convert_delta_to_message_chunk try: choice = response_json["choices"][0] if not isinstance(choice, dict): raise TypeError("Endpoint response is not well formed.") except (KeyError, IndexError, TypeError) as e: raise ValueError( "Error while formatting response payload for chat model of type" ) from e chunk = _convert_delta_to_message_chunk(choice["delta"], default_chunk_cls) default_chunk_cls = chunk.__class__ finish_reason = choice.get("finish_reason") usage = choice.get("usage") gen_info = {} if finish_reason is not None: gen_info.update({"finish_reason": finish_reason}) if usage is not None: gen_info.update({"usage": usage}) return ChatGenerationChunk( message=chunk, generation_info=gen_info if gen_info else None ) def _process_response(self, response_json: dict) -> ChatResult: """Formats response in OpenAI spec. Args: response_json (dict): The JSON response from the chat model endpoint. Returns: ChatResult: An object containing the list of `ChatGeneration` objects and additional LLM output information. Raises: ValueError: If the response JSON is not well-formed or does not contain the expected structure. """ from langchain_openai.chat_models.base import _convert_dict_to_message generations = [] try: choices = response_json["choices"] if not isinstance(choices, list): raise TypeError("Endpoint response is not well formed.") except (KeyError, TypeError) as e: raise ValueError( "Error while formatting response payload for chat model of type" ) from e for choice in choices: message = _convert_dict_to_message(choice["message"]) generation_info = {"finish_reason": choice.get("finish_reason")} if "logprobs" in choice: generation_info["logprobs"] = choice["logprobs"] gen = ChatGeneration( message=message, generation_info=generation_info, ) generations.append(gen) token_usage = response_json.get("usage", {}) llm_output = { "token_usage": token_usage, "model_name": self.model, "system_fingerprint": response_json.get("system_fingerprint", ""), } return ChatResult(generations=generations, llm_output=llm_output)
[docs] def bind_tools( self, tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: formatted_tools = [convert_to_openai_tool(tool) for tool in tools] return super().bind(tools=formatted_tools, **kwargs)
[docs] class ChatOCIModelDeploymentVLLM(ChatOCIModelDeployment): """OCI large language chat models deployed with vLLM. To use, you must provide the model HTTP endpoint from your deployed model, e.g. https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict. To authenticate, `oracle-ads` has been used to automatically load credentials: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html Make sure to have the required policies to access the OCI Data Science Model Deployment endpoint. See: https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint Example: .. code-block:: python from langchain_community.chat_models import ChatOCIModelDeploymentVLLM chat = ChatOCIModelDeploymentVLLM( endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict", frequency_penalty=0.1, max_tokens=512, temperature=0.2, top_p=1.0, # other model parameters... ) """ # noqa: E501 frequency_penalty: float = 0.0 """Penalizes repeated tokens according to frequency. Between 0 and 1.""" logit_bias: Optional[Dict[str, float]] = None """Adjust the probability of specific tokens being generated.""" max_tokens: Optional[int] = 256 """The maximum number of tokens to generate in the completion.""" n: int = 1 """Number of output sequences to return for the given prompt.""" presence_penalty: float = 0.0 """Penalizes repeated tokens. Between 0 and 1.""" temperature: float = 0.2 """What sampling temperature to use.""" top_p: float = 1.0 """Total probability mass of tokens to consider at each step.""" best_of: Optional[int] = None """Generates best_of completions server-side and returns the "best" (the one with the highest log probability per token). """ use_beam_search: Optional[bool] = False """Whether to use beam search instead of sampling.""" top_k: Optional[int] = -1 """Number of most likely tokens to consider at each step.""" min_p: Optional[float] = 0.0 """Float that represents the minimum probability for a token to be considered. Must be in [0,1]. 0 to disable this.""" repetition_penalty: Optional[float] = 1.0 """Float that penalizes new tokens based on their frequency in the generated text. Values > 1 encourage the model to use new tokens.""" length_penalty: Optional[float] = 1.0 """Float that penalizes sequences based on their length. Used only when `use_beam_search` is True.""" early_stopping: Optional[bool] = False """Controls the stopping condition for beam search. It accepts the following values: `True`, where the generation stops as soon as there are `best_of` complete candidates; `False`, where a heuristic is applied to the generation stops when it is very unlikely to find better candidates; `never`, where the beam search procedure only stops where there cannot be better candidates (canonical beam search algorithm).""" ignore_eos: Optional[bool] = False """Whether to ignore the EOS token and continue generating tokens after the EOS token is generated.""" min_tokens: Optional[int] = 0 """Minimum number of tokens to generate per output sequence before EOS or stop_token_ids can be generated""" stop_token_ids: Optional[List[int]] = None """List of tokens that stop the generation when they are generated. The returned output will contain the stop tokens unless the stop tokens are special tokens.""" skip_special_tokens: Optional[bool] = True """Whether to skip special tokens in the output. Defaults to True.""" spaces_between_special_tokens: Optional[bool] = True """Whether to add spaces between special tokens in the output. Defaults to True.""" tool_choice: Optional[str] = None """Whether to use tool calling. Defaults to None, tool calling is disabled. Tool calling requires model support and the vLLM to be configured with `--tool-call-parser`. Set this to `auto` for the model to make tool calls automatically. Set this to `required` to force the model to always call one or more tools. """ chat_template: Optional[str] = None """Use customized chat template. Defaults to None. The chat template from the tokenizer will be used. """ @property def _llm_type(self) -> str: """Return type of llm.""" return "oci_model_depolyment_chat_endpoint_vllm" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters.""" params = { "model": self.model, "stop": self.stop, "stream": self.streaming, } for attr_name in self._get_model_params(): try: value = getattr(self, attr_name) if value is not None: params.update({attr_name: value}) except Exception: pass return params def _get_model_params(self) -> List[str]: """Gets the name of model parameters.""" return [ "best_of", "early_stopping", "frequency_penalty", "ignore_eos", "length_penalty", "logit_bias", "logprobs", "max_tokens", "min_p", "min_tokens", "n", "presence_penalty", "repetition_penalty", "skip_special_tokens", "spaces_between_special_tokens", "stop_token_ids", "temperature", "top_k", "top_p", "use_beam_search", "tool_choice", "chat_template", ]
[docs] class ChatOCIModelDeploymentTGI(ChatOCIModelDeployment): """OCI large language chat models deployed with Text Generation Inference. To use, you must provide the model HTTP endpoint from your deployed model, e.g. https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict. To authenticate, `oracle-ads` has been used to automatically load credentials: https://accelerated-data-science.readthedocs.io/en/latest/user_guide/cli/authentication.html Make sure to have the required policies to access the OCI Data Science Model Deployment endpoint. See: https://docs.oracle.com/en-us/iaas/data-science/using/model-dep-policies-auth.htm#model_dep_policies_auth__predict-endpoint Example: .. code-block:: python from langchain_community.chat_models import ChatOCIModelDeploymentTGI chat = ChatOCIModelDeploymentTGI( endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict", max_token=512, temperature=0.2, frequency_penalty=0.1, seed=42, # other model parameters... ) """ # noqa: E501 frequency_penalty: Optional[float] = None """Penalizes repeated tokens according to frequency. Between 0 and 1.""" logit_bias: Optional[Dict[str, float]] = None """Adjust the probability of specific tokens being generated.""" logprobs: Optional[bool] = None """Whether to return log probabilities of the output tokens or not.""" max_tokens: int = 256 """The maximum number of tokens to generate in the completion.""" n: int = 1 """Number of output sequences to return for the given prompt.""" presence_penalty: Optional[float] = None """Penalizes repeated tokens. Between 0 and 1.""" seed: Optional[int] = None """To sample deterministically,""" temperature: float = 0.2 """What sampling temperature to use.""" top_p: Optional[float] = None """Total probability mass of tokens to consider at each step.""" top_logprobs: Optional[int] = None """An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with an associated log probability. logprobs must be set to true if this parameter is used.""" @property def _llm_type(self) -> str: """Return type of llm.""" return "oci_model_depolyment_chat_endpoint_tgi" @property def _default_params(self) -> Dict[str, Any]: """Get the default parameters.""" params = { "model": self.model, "stop": self.stop, "stream": self.streaming, } for attr_name in self._get_model_params(): try: value = getattr(self, attr_name) if value is not None: params.update({attr_name: value}) except Exception: pass return params def _get_model_params(self) -> List[str]: """Gets the name of model parameters.""" return [ "frequency_penalty", "logit_bias", "logprobs", "max_tokens", "n", "presence_penalty", "seed", "temperature", "top_k", "top_p", "top_logprobs", ]