langchain_community.chat_models.snowflake ηš„ζΊδ»£η 

import json
from typing import (
    Any,
    Callable,
    Dict,
    Iterator,
    List,
    Literal,
    Optional,
    Sequence,
    Type,
    Union,
)

from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models import BaseChatModel
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.tools import BaseTool
from langchain_core.utils import (
    convert_to_secret_str,
    get_from_dict_or_env,
    get_pydantic_field_names,
)
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_core.utils.utils import _build_model_kwargs
from pydantic import Field, SecretStr, model_validator

SUPPORTED_ROLES: List[str] = [
    "system",
    "user",
    "assistant",
]


[docs] class ChatSnowflakeCortexError(Exception): """Error with Snowpark client."""
def _convert_message_to_dict(message: BaseMessage) -> dict: """Convert a LangChain message to a dictionary. Args: message: The LangChain message. Returns: The dictionary. """ message_dict: Dict[str, Any] = { "content": message.content, } # Populate role and additional message data if isinstance(message, ChatMessage) and message.role in SUPPORTED_ROLES: message_dict["role"] = message.role elif isinstance(message, SystemMessage): message_dict["role"] = "system" elif isinstance(message, HumanMessage): message_dict["role"] = "user" elif isinstance(message, AIMessage): message_dict["role"] = "assistant" else: raise TypeError(f"Got unknown type {message}") return message_dict def _truncate_at_stop_tokens( text: str, stop: Optional[List[str]], ) -> str: """Truncates text at the earliest stop token found.""" if stop is None: return text for stop_token in stop: stop_token_idx = text.find(stop_token) if stop_token_idx != -1: text = text[:stop_token_idx] return text
[docs] class ChatSnowflakeCortex(BaseChatModel): """Snowflake Cortex based Chat model To use the chat model, you must have the ``snowflake-snowpark-python`` Python package installed and either: 1. environment variables set with your snowflake credentials or 2. directly passed in as kwargs to the ChatSnowflakeCortex constructor. Example: .. code-block:: python from langchain_community.chat_models import ChatSnowflakeCortex chat = ChatSnowflakeCortex() """ # test_tools: Dict[str, Any] = Field(default_factory=dict) test_tools: Dict[str, Union[Dict[str, Any], Type, Callable, BaseTool]] = Field( default_factory=dict ) session: Any = None """Snowpark session object.""" model: str = "mistral-large" """Snowflake cortex hosted LLM model name, defaulted to `mistral-large`. Refer to docs for more options. Also note, not all models support agentic workflows.""" cortex_function: str = "complete" """Cortex function to use, defaulted to `complete`. Refer to docs for more options.""" temperature: float = 0 """Model temperature. Value should be >= 0 and <= 1.0""" max_tokens: Optional[int] = None """The maximum number of output tokens in the response.""" top_p: Optional[float] = 0 """top_p adjusts the number of choices for each predicted tokens based on cumulative probabilities. Value should be ranging between 0.0 and 1.0. """ snowflake_username: Optional[str] = Field(default=None, alias="username") """Automatically inferred from env var `SNOWFLAKE_USERNAME` if not provided.""" snowflake_password: Optional[SecretStr] = Field(default=None, alias="password") """Automatically inferred from env var `SNOWFLAKE_PASSWORD` if not provided.""" snowflake_account: Optional[str] = Field(default=None, alias="account") """Automatically inferred from env var `SNOWFLAKE_ACCOUNT` if not provided.""" snowflake_database: Optional[str] = Field(default=None, alias="database") """Automatically inferred from env var `SNOWFLAKE_DATABASE` if not provided.""" snowflake_schema: Optional[str] = Field(default=None, alias="schema") """Automatically inferred from env var `SNOWFLAKE_SCHEMA` if not provided.""" snowflake_warehouse: Optional[str] = Field(default=None, alias="warehouse") """Automatically inferred from env var `SNOWFLAKE_WAREHOUSE` if not provided.""" snowflake_role: Optional[str] = Field(default=None, alias="role") """Automatically inferred from env var `SNOWFLAKE_ROLE` if not provided."""
[docs] def bind_tools( self, tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]], *, tool_choice: Optional[ Union[dict, str, Literal["auto", "any", "none"], bool] ] = "auto", **kwargs: Any, ) -> "ChatSnowflakeCortex": """Bind tool-like objects to this chat model, ensuring they conform to expected formats.""" formatted_tools = [convert_to_openai_tool(tool) for tool in tools] # self.test_tools.update(formatted_tools) formatted_tools_dict = { tool["name"]: tool for tool in formatted_tools if "name" in tool } self.test_tools.update(formatted_tools_dict) return self
@model_validator(mode="before") @classmethod def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = get_pydantic_field_names(cls) values = _build_model_kwargs(values, all_required_field_names) return values @model_validator(mode="before") def validate_environment(cls, values: Dict) -> Dict: try: from snowflake.snowpark import Session except ImportError: raise ImportError( """`snowflake-snowpark-python` package not found, please install: `pip install snowflake-snowpark-python` """ ) values["snowflake_username"] = get_from_dict_or_env( values, "snowflake_username", "SNOWFLAKE_USERNAME" ) values["snowflake_password"] = convert_to_secret_str( get_from_dict_or_env(values, "snowflake_password", "SNOWFLAKE_PASSWORD") ) values["snowflake_account"] = get_from_dict_or_env( values, "snowflake_account", "SNOWFLAKE_ACCOUNT" ) values["snowflake_database"] = get_from_dict_or_env( values, "snowflake_database", "SNOWFLAKE_DATABASE" ) values["snowflake_schema"] = get_from_dict_or_env( values, "snowflake_schema", "SNOWFLAKE_SCHEMA" ) values["snowflake_warehouse"] = get_from_dict_or_env( values, "snowflake_warehouse", "SNOWFLAKE_WAREHOUSE" ) values["snowflake_role"] = get_from_dict_or_env( values, "snowflake_role", "SNOWFLAKE_ROLE" ) connection_params = { "account": values["snowflake_account"], "user": values["snowflake_username"], "password": values["snowflake_password"].get_secret_value(), "database": values["snowflake_database"], "schema": values["snowflake_schema"], "warehouse": values["snowflake_warehouse"], "role": values["snowflake_role"], "client_session_keep_alive": "True", } try: values["session"] = Session.builder.configs(connection_params).create() except Exception as e: raise ChatSnowflakeCortexError(f"Failed to create session: {e}") return values def __del__(self) -> None: if getattr(self, "session", None) is not None: self.session.close() @property def _llm_type(self) -> str: """Get the type of language model used by this chat model.""" return f"snowflake-cortex-{self.model}" def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> ChatResult: message_dicts = [_convert_message_to_dict(m) for m in messages] # Check for tool invocation in the messages and prepare for tool use tool_output = None for message in messages: if ( isinstance(message.content, dict) and isinstance(message, SystemMessage) and "invoke_tool" in message.content ): tool_info = json.loads(message.content.get("invoke_tool")) tool_name = tool_info.get("tool_name") if tool_name in self.test_tools: tool_args = tool_info.get("args", {}) tool_output = self.test_tools[tool_name](**tool_args) break # Prepare messages for SQL query if tool_output: message_dicts.append( {"tool_output": str(tool_output)} ) # Ensure tool_output is a string # JSON dump the message_dicts and options without additional escaping message_json = json.dumps(message_dicts) options = { "temperature": self.temperature, "top_p": self.top_p if self.top_p is not None else 1.0, "max_tokens": self.max_tokens if self.max_tokens is not None else 2048, } options_json = json.dumps(options) # JSON string of options # Form the SQL statement using JSON literals sql_stmt = f""" select snowflake.cortex.{self.cortex_function}( '{self.model}', parse_json('{message_json}'), parse_json('{options_json}') ) as llm_response; """ try: # Use the Snowflake Cortex Complete function self.session.sql( f"USE WAREHOUSE {self.session.get_current_warehouse()};" ).collect() l_rows = self.session.sql(sql_stmt).collect() except Exception as e: raise ChatSnowflakeCortexError( f"Error while making request to Snowflake Cortex: {e}" ) response = json.loads(l_rows[0]["LLM_RESPONSE"]) ai_message_content = response["choices"][0]["messages"] content = _truncate_at_stop_tokens(ai_message_content, stop) message = AIMessage( content=content, response_metadata=response["usage"], ) generation = ChatGeneration(message=message) return ChatResult(generations=[generation]) def _stream_content( self, content: str, stop: Optional[List[str]] ) -> Iterator[ChatGenerationChunk]: """ Stream the output of the model in chunks to return ChatGenerationChunk. """ chunk_size = 50 # Define a reasonable chunk size for streaming truncated_content = _truncate_at_stop_tokens(content, stop) for i in range(0, len(truncated_content), chunk_size): chunk_content = truncated_content[i : i + chunk_size] # Create and yield a ChatGenerationChunk with partial content yield ChatGenerationChunk(message=AIMessageChunk(content=chunk_content)) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: """Stream the output of the model in chunks to return ChatGenerationChunk.""" message_dicts = [_convert_message_to_dict(m) for m in messages] # Check for and potentially use a tool before streaming for message in messages: if ( isinstance(message, str) and isinstance(message, SystemMessage) and "invoke_tool" in message.content ): tool_info = json.loads(message.content) tool_list = tool_info.get("invoke_tools", []) for tool in tool_list: tool_name = tool.get("tool_name") tool_args = tool.get("args", {}) if tool_name in self.test_tools: tool_args = tool_info.get("args", {}) tool_result = self.test_tools[tool_name](**tool_args) additional_context = {"tool_output": tool_result} message_dicts.append( additional_context ) # Append tool result to message dicts # JSON dump the message_dicts and options without additional escaping message_json = json.dumps(message_dicts) options = { "temperature": self.temperature, "top_p": self.top_p if self.top_p is not None else 1.0, "max_tokens": self.max_tokens if self.max_tokens is not None else 2048, # "stream": True, } options_json = json.dumps(options) # JSON string of options # Form the SQL statement using JSON literals sql_stmt = f""" select snowflake.cortex.{self.cortex_function}( '{self.model}', parse_json('{message_json}'), parse_json('{options_json}') ) as llm_stream_response; """ try: # Use the Snowflake Cortex Complete function self.session.sql( f"USE WAREHOUSE {self.session.get_current_warehouse()};" ).collect() result = self.session.sql(sql_stmt).collect() # Iterate over the generator to yield streaming responses for row in result: response = json.loads(row["LLM_STREAM_RESPONSE"]) ai_message_content = response["choices"][0]["messages"] # Stream response content in chunks for chunk in self._stream_content(ai_message_content, stop): yield chunk except Exception as e: raise ChatSnowflakeCortexError( f"Error while making request to Snowflake Cortex stream: {e}" )