langchain_community.document_loaders.chatgpt ηš„ζΊδ»£η 

import datetime
import json
from typing import List

from langchain_core.documents import Document

from langchain_community.document_loaders.base import BaseLoader


[docs] def concatenate_rows(message: dict, title: str) -> str: """ Combine message information in a readable format ready to be used. Args: message: Message to be concatenated title: Title of the conversation Returns: Concatenated message """ if not message: return "" sender = message["author"]["role"] if message["author"] else "unknown" text = message["content"]["parts"][0] date = datetime.datetime.fromtimestamp(message["create_time"]).strftime( "%Y-%m-%d %H:%M:%S" ) return f"{title} - {sender} on {date}: {text}\n\n"
[docs] class ChatGPTLoader(BaseLoader): """Load conversations from exported `ChatGPT` data."""
[docs] def __init__(self, log_file: str, num_logs: int = -1): """Initialize a class object. Args: log_file: Path to the log file num_logs: Number of logs to load. If 0, load all logs. """ self.log_file = log_file self.num_logs = num_logs
[docs] def load(self) -> List[Document]: with open(self.log_file, encoding="utf8") as f: data = json.load(f)[: self.num_logs] if self.num_logs else json.load(f) documents = [] for d in data: title = d["title"] messages = d["mapping"] text = "".join( [ concatenate_rows(messages[key]["message"], title) for idx, key in enumerate(messages) if not ( idx == 0 and messages[key]["message"]["author"]["role"] == "system" ) ] ) metadata = {"source": str(self.log_file)} documents.append(Document(page_content=text, metadata=metadata)) return documents