langchain_community.document_loaders.parsers.audio ηš„ζΊδ»£η 

import io
import logging
import os
import time
from typing import Any, Callable, Dict, Iterator, Literal, Optional, Tuple, Union

from langchain_core.documents import Document

from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders import Blob
from langchain_community.utils.openai import is_openai_v1

logger = logging.getLogger(__name__)


[docs] class AzureOpenAIWhisperParser(BaseBlobParser): """ Transcribe and parse audio files using Azure OpenAI Whisper. This parser integrates with the Azure OpenAI Whisper model to transcribe audio files. It differs from the standard OpenAI Whisper parser, requiring an Azure endpoint and credentials. The parser is limited to files under 25 MB. **Note**: This parser uses the Azure OpenAI API, providing integration with the Azure ecosystem, and making it suitable for workflows involving other Azure services. For files larger than 25 MB, consider using Azure AI Speech batch transcription: https://learn.microsoft.com/azure/ai-services/speech-service/batch-transcription-create?pivots=rest-api#use-a-whisper-model Setup: 1. Follow the instructions here to deploy Azure Whisper: https://learn.microsoft.com/azure/ai-services/openai/whisper-quickstart?tabs=command-line%2Cpython-new&pivots=programming-language-python 2. Install ``langchain`` and set the following environment variables: .. code-block:: bash pip install -U langchain langchain-community export AZURE_OPENAI_API_KEY="your-api-key" export AZURE_OPENAI_ENDPOINT="https://your-endpoint.openai.azure.com/" export OPENAI_API_VERSION="your-api-version" Example Usage: .. code-block:: python from langchain.community import AzureOpenAIWhisperParser whisper_parser = AzureOpenAIWhisperParser( deployment_name="your-whisper-deployment", api_version="2024-06-01", api_key="your-api-key", # other params... ) audio_blob = Blob(path="your-audio-file-path") response = whisper_parser.lazy_parse(audio_blob) for document in response: print(document.page_content) Integration with Other Loaders: The AzureOpenAIWhisperParser can be used with video/audio loaders and `GenericLoader` to automate retrieval and parsing. YoutubeAudioLoader Example: .. code-block:: python from langchain_community.document_loaders.blob_loaders import ( YoutubeAudioLoader ) from langchain_community.document_loaders.generic import GenericLoader # Must be a list youtube_url = ["https://your-youtube-url"] save_dir = "directory-to-download-videos" loader = GenericLoader( YoutubeAudioLoader(youtube_url, save_dir), AzureOpenAIWhisperParser(deployment_name="your-deployment-name") ) docs = loader.load() """
[docs] def __init__( self, *, api_key: Optional[str] = None, azure_endpoint: Optional[str] = None, api_version: Optional[str] = None, azure_ad_token_provider: Union[Callable[[], str], None] = None, language: Optional[str] = None, prompt: Optional[str] = None, response_format: Union[ Literal["json", "text", "srt", "verbose_json", "vtt"], None ] = None, temperature: Optional[float] = None, deployment_name: str, max_retries: int = 3, ): """ Initialize the AzureOpenAIWhisperParser. Args: api_key (Optional[str]): Azure OpenAI API key. If not provided, defaults to the `AZURE_OPENAI_API_KEY` environment variable. azure_endpoint (Optional[str]): Azure OpenAI service endpoint. Defaults to `AZURE_OPENAI_ENDPOINT` environment variable if not set. api_version (Optional[str]): API version to use, defaults to the `OPENAI_API_VERSION` environment variable. azure_ad_token_provider (Union[Callable[[], str], None]): Azure Active Directory token for authentication (if applicable). language (Optional[str]): Language in which the request should be processed. prompt (Optional[str]): Custom instructions or prompt for the Whisper model. response_format (Union[str, None]): The desired output format. Options: "json", "text", "srt", "verbose_json", "vtt". temperature (Optional[float]): Controls the randomness of the model's output. deployment_name (str): The deployment name of the Whisper model. max_retries (int): Maximum number of retries for failed API requests. Raises: ImportError: If the required package `openai` is not installed. """ self.api_key = api_key or os.environ.get("AZURE_OPENAI_API_KEY") self.azure_endpoint = azure_endpoint or os.environ.get("AZURE_OPENAI_ENDPOINT") self.api_version = api_version or os.environ.get("OPENAI_API_VERSION") self.azure_ad_token_provider = azure_ad_token_provider self.language = language self.prompt = prompt self.response_format = response_format self.temperature = temperature self.deployment_name = deployment_name self.max_retries = max_retries try: import openai except ImportError: raise ImportError( "openai package not found, please install it with " "`pip install openai`" ) if is_openai_v1(): self._client = openai.AzureOpenAI( api_key=self.api_key, azure_endpoint=self.azure_endpoint, api_version=self.api_version, max_retries=self.max_retries, azure_ad_token=self.azure_ad_token_provider, ) else: if self.api_key: openai.api_key = self.api_key if self.azure_endpoint: openai.api_base = self.azure_endpoint if self.api_version: openai.api_version = self.api_version openai.api_type = "azure" self._client = openai
@property def _create_params(self) -> Dict[str, Any]: params = { "language": self.language, "prompt": self.prompt, "response_format": self.response_format, "temperature": self.temperature, } return {k: v for k, v in params.items() if v is not None}
[docs] def lazy_parse(self, blob: Blob) -> Iterator[Document]: """ Lazily parse the provided audio blob for transcription. Args: blob (Blob): The audio file in Blob format to be transcribed. Yields: Document: Parsed transcription from the audio file. Raises: Exception: If an error occurs during transcription. """ file_obj = open(str(blob.path), "rb") # Transcribe try: if is_openai_v1(): transcript = self._client.audio.transcriptions.create( model=self.deployment_name, file=file_obj, **self._create_params, ) else: transcript = self._client.Audio.transcribe( model=self.deployment_name, deployment_id=self.deployment_name, file=file_obj, **self._create_params, ) except Exception: raise yield Document( page_content=transcript.text if not isinstance(transcript, str) else transcript, metadata={"source": blob.source}, )
[docs] class OpenAIWhisperParser(BaseBlobParser): """Transcribe and parse audio files. Audio transcription is with OpenAI Whisper model. Args: api_key: OpenAI API key chunk_duration_threshold: Minimum duration of a chunk in seconds NOTE: According to the OpenAI API, the chunk duration should be at least 0.1 seconds. If the chunk duration is less or equal than the threshold, it will be skipped. """
[docs] def __init__( self, api_key: Optional[str] = None, *, chunk_duration_threshold: float = 0.1, base_url: Optional[str] = None, language: Union[str, None] = None, prompt: Union[str, None] = None, response_format: Union[ Literal["json", "text", "srt", "verbose_json", "vtt"], None ] = None, temperature: Union[float, None] = None, ): self.api_key = api_key self.chunk_duration_threshold = chunk_duration_threshold self.base_url = ( base_url if base_url is not None else os.environ.get("OPENAI_API_BASE") ) self.language = language self.prompt = prompt self.response_format = response_format self.temperature = temperature
@property def _create_params(self) -> Dict[str, Any]: params = { "language": self.language, "prompt": self.prompt, "response_format": self.response_format, "temperature": self.temperature, } return {k: v for k, v in params.items() if v is not None}
[docs] def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazily parse the blob.""" try: import openai except ImportError: raise ImportError( "openai package not found, please install it with " "`pip install openai`" ) try: from pydub import AudioSegment except ImportError: raise ImportError( "pydub package not found, please install it with " "`pip install pydub`" ) if is_openai_v1(): # api_key optional, defaults to `os.environ['OPENAI_API_KEY']` client = openai.OpenAI(api_key=self.api_key, base_url=self.base_url) else: # Set the API key if provided if self.api_key: openai.api_key = self.api_key if self.base_url: openai.api_base = self.base_url # Audio file from disk audio = AudioSegment.from_file(blob.path) # Define the duration of each chunk in minutes # Need to meet 25MB size limit for Whisper API chunk_duration = 20 chunk_duration_ms = chunk_duration * 60 * 1000 # Split the audio into chunk_duration_ms chunks for split_number, i in enumerate(range(0, len(audio), chunk_duration_ms)): # Audio chunk chunk = audio[i : i + chunk_duration_ms] # Skip chunks that are too short to transcribe if chunk.duration_seconds <= self.chunk_duration_threshold: continue file_obj = io.BytesIO(chunk.export(format="mp3").read()) if blob.source is not None: file_obj.name = blob.source + f"_part_{split_number}.mp3" else: file_obj.name = f"part_{split_number}.mp3" # Transcribe print(f"Transcribing part {split_number + 1}!") # noqa: T201 attempts = 0 while attempts < 3: try: if is_openai_v1(): transcript = client.audio.transcriptions.create( model="whisper-1", file=file_obj, **self._create_params ) else: transcript = openai.Audio.transcribe("whisper-1", file_obj) # type: ignore[attr-defined] break except Exception as e: attempts += 1 print(f"Attempt {attempts} failed. Exception: {str(e)}") # noqa: T201 time.sleep(5) else: print("Failed to transcribe after 3 attempts.") # noqa: T201 continue yield Document( page_content=transcript.text if not isinstance(transcript, str) else transcript, metadata={"source": blob.source, "chunk": split_number}, )
[docs] class OpenAIWhisperParserLocal(BaseBlobParser): """Transcribe and parse audio files with OpenAI Whisper model. Audio transcription with OpenAI Whisper model locally from transformers. Parameters: device - device to use NOTE: By default uses the gpu if available, if you want to use cpu, please set device = "cpu" lang_model - whisper model to use, for example "openai/whisper-medium" forced_decoder_ids - id states for decoder in multilanguage model, usage example: from transformers import WhisperProcessor processor = WhisperProcessor.from_pretrained("openai/whisper-medium") forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="french", task="transcribe") forced_decoder_ids = WhisperProcessor.get_decoder_prompt_ids(language="french", task="translate") """
[docs] def __init__( self, device: str = "0", lang_model: Optional[str] = None, batch_size: int = 8, chunk_length: int = 30, forced_decoder_ids: Optional[Tuple[Dict]] = None, ): """Initialize the parser. Args: device: device to use. lang_model: whisper model to use, for example "openai/whisper-medium". Defaults to None. forced_decoder_ids: id states for decoder in a multilanguage model. Defaults to None. batch_size: batch size used for decoding Defaults to 8. chunk_length: chunk length used during inference. Defaults to 30s. """ try: from transformers import pipeline except ImportError: raise ImportError( "transformers package not found, please install it with " "`pip install transformers`" ) try: import torch except ImportError: raise ImportError( "torch package not found, please install it with " "`pip install torch`" ) # Determine the device to use if device == "cpu": self.device = "cpu" else: self.device = "cuda:0" if torch.cuda.is_available() else "cpu" if self.device == "cpu": default_model = "openai/whisper-base" self.lang_model = lang_model if lang_model else default_model else: # Set the language model based on the device and available memory mem = torch.cuda.get_device_properties(self.device).total_memory / (1024**2) if mem < 5000: rec_model = "openai/whisper-base" elif mem < 7000: rec_model = "openai/whisper-small" elif mem < 12000: rec_model = "openai/whisper-medium" else: rec_model = "openai/whisper-large" self.lang_model = lang_model if lang_model else rec_model print("Using the following model: ", self.lang_model) # noqa: T201 self.batch_size = batch_size # load model for inference self.pipe = pipeline( "automatic-speech-recognition", model=self.lang_model, chunk_length_s=chunk_length, device=self.device, ) if forced_decoder_ids is not None: try: self.pipe.model.config.forced_decoder_ids = forced_decoder_ids except Exception as exception_text: logger.info( "Unable to set forced_decoder_ids parameter for whisper model" f"Text of exception: {exception_text}" "Therefore whisper model will use default mode for decoder" )
[docs] def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazily parse the blob.""" try: from pydub import AudioSegment except ImportError: raise ImportError( "pydub package not found, please install it with `pip install pydub`" ) try: import librosa except ImportError: raise ImportError( "librosa package not found, please install it with " "`pip install librosa`" ) # Audio file from disk audio = AudioSegment.from_file(blob.path) file_obj = io.BytesIO(audio.export(format="mp3").read()) # Transcribe print(f"Transcribing part {blob.path}!") # noqa: T201 y, sr = librosa.load(file_obj, sr=16000) prediction = self.pipe(y.copy(), batch_size=self.batch_size)["text"] yield Document( page_content=prediction, metadata={"source": blob.source}, )
[docs] class YandexSTTParser(BaseBlobParser): """Transcribe and parse audio files. Audio transcription is with OpenAI Whisper model."""
[docs] def __init__( self, *, api_key: Optional[str] = None, iam_token: Optional[str] = None, model: str = "general", language: str = "auto", ): """Initialize the parser. Args: api_key: API key for a service account with the `ai.speechkit-stt.user` role. iam_token: IAM token for a service account with the `ai.speechkit-stt.user` role. model: Recognition model name. Defaults to general. language: The language in ISO 639-1 format. Defaults to automatic language recognition. Either `api_key` or `iam_token` must be provided, but not both. """ if (api_key is None) == (iam_token is None): raise ValueError( "Either 'api_key' or 'iam_token' must be provided, but not both." ) self.api_key = api_key self.iam_token = iam_token self.model = model self.language = language
[docs] def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazily parse the blob.""" try: from speechkit import configure_credentials, creds, model_repository from speechkit.stt import AudioProcessingType except ImportError: raise ImportError( "yandex-speechkit package not found, please install it with " "`pip install yandex-speechkit`" ) try: from pydub import AudioSegment except ImportError: raise ImportError( "pydub package not found, please install it with " "`pip install pydub`" ) if self.api_key: configure_credentials( yandex_credentials=creds.YandexCredentials(api_key=self.api_key) ) else: configure_credentials( yandex_credentials=creds.YandexCredentials(iam_token=self.iam_token) ) audio = AudioSegment.from_file(blob.path) model = model_repository.recognition_model() model.model = self.model model.language = self.language model.audio_processing_type = AudioProcessingType.Full result = model.transcribe(audio) for res in result: yield Document( page_content=res.normalized_text, metadata={"source": blob.source}, )
[docs] class FasterWhisperParser(BaseBlobParser): """Transcribe and parse audio files with faster-whisper. faster-whisper is a reimplementation of OpenAI's Whisper model using CTranslate2, which is up to 4 times faster than openai/whisper for the same accuracy while using less memory. The efficiency can be further improved with 8-bit quantization on both CPU and GPU. It can automatically detect the following 14 languages and transcribe the text into their respective languages: en, zh, fr, de, ja, ko, ru, es, th, it, pt, vi, ar, tr. The gitbub repository for faster-whisper is : https://github.com/SYSTRAN/faster-whisper Example: Load a YouTube video and transcribe the video speech into a document. .. code-block:: python from langchain.document_loaders.generic import GenericLoader from langchain_community.document_loaders.parsers.audio import FasterWhisperParser from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader url="https://www.youtube.com/watch?v=your_video" save_dir="your_dir/" loader = GenericLoader( YoutubeAudioLoader([url],save_dir), FasterWhisperParser() ) docs = loader.load() """
[docs] def __init__( self, *, device: Optional[str] = "cuda", model_size: Optional[str] = None, ): """Initialize the parser. Args: device: It can be "cuda" or "cpu" based on the available device. model_size: There are four model sizes to choose from: "base", "small", "medium", and "large-v3", based on the available GPU memory. """ try: import torch except ImportError: raise ImportError( "torch package not found, please install it with `pip install torch`" ) # Determine the device to use if device == "cpu": self.device = "cpu" else: self.device = "cuda" if torch.cuda.is_available() else "cpu" # Determine the model_size if self.device == "cpu": self.model_size = "base" else: # Set the model_size based on the available memory mem = torch.cuda.get_device_properties(self.device).total_memory / (1024**2) if mem < 1000: self.model_size = "base" elif mem < 3000: self.model_size = "small" elif mem < 5000: self.model_size = "medium" else: self.model_size = "large-v3" # If the user has assigned a model size, then use the assigned size if model_size is not None: if model_size in ["base", "small", "medium", "large-v3"]: self.model_size = model_size
[docs] def lazy_parse(self, blob: Blob) -> Iterator[Document]: """Lazily parse the blob.""" try: from pydub import AudioSegment except ImportError: raise ImportError( "pydub package not found, please install it with `pip install pydub`" ) try: from faster_whisper import WhisperModel except ImportError: raise ImportError( "faster_whisper package not found, please install it with " "`pip install faster-whisper`" ) # get the audio if isinstance(blob.data, bytes): # blob contains the audio audio = AudioSegment.from_file(io.BytesIO(blob.data)) elif blob.data is None and blob.path: # Audio file from disk audio = AudioSegment.from_file(blob.path) else: raise ValueError("Unable to get audio from blob") file_obj = io.BytesIO(audio.export(format="mp3").read()) # Transcribe model = WhisperModel( self.model_size, device=self.device, compute_type="float16" ) segments, info = model.transcribe(file_obj, beam_size=5) for segment in segments: yield Document( page_content=segment.text, metadata={ "source": blob.source, "timestamps": "[%.2fs -> %.2fs]" % (segment.start, segment.end), "language": info.language, "probability": "%d%%" % round(info.language_probability * 100), **blob.metadata, }, )