langchain_community.document_loaders.parsers.language.language_parser ηš„ζΊδ»£η 

from __future__ import annotations

from typing import Any, Dict, Iterator, Literal, Optional

from langchain_core.documents import Document

from langchain_community.document_loaders.base import BaseBlobParser
from langchain_community.document_loaders.blob_loaders import Blob
from langchain_community.document_loaders.parsers.language.c import CSegmenter
from langchain_community.document_loaders.parsers.language.cobol import CobolSegmenter
from langchain_community.document_loaders.parsers.language.cpp import CPPSegmenter
from langchain_community.document_loaders.parsers.language.csharp import CSharpSegmenter
from langchain_community.document_loaders.parsers.language.elixir import ElixirSegmenter
from langchain_community.document_loaders.parsers.language.go import GoSegmenter
from langchain_community.document_loaders.parsers.language.java import JavaSegmenter
from langchain_community.document_loaders.parsers.language.javascript import (
    JavaScriptSegmenter,
)
from langchain_community.document_loaders.parsers.language.kotlin import KotlinSegmenter
from langchain_community.document_loaders.parsers.language.lua import LuaSegmenter
from langchain_community.document_loaders.parsers.language.perl import PerlSegmenter
from langchain_community.document_loaders.parsers.language.php import PHPSegmenter
from langchain_community.document_loaders.parsers.language.python import PythonSegmenter
from langchain_community.document_loaders.parsers.language.ruby import RubySegmenter
from langchain_community.document_loaders.parsers.language.rust import RustSegmenter
from langchain_community.document_loaders.parsers.language.scala import ScalaSegmenter
from langchain_community.document_loaders.parsers.language.sql import SQLSegmenter
from langchain_community.document_loaders.parsers.language.typescript import (
    TypeScriptSegmenter,
)

LANGUAGE_EXTENSIONS: Dict[str, str] = {
    "py": "python",
    "js": "js",
    "cobol": "cobol",
    "c": "c",
    "cpp": "cpp",
    "cs": "csharp",
    "rb": "ruby",
    "scala": "scala",
    "rs": "rust",
    "go": "go",
    "kt": "kotlin",
    "lua": "lua",
    "pl": "perl",
    "ts": "ts",
    "java": "java",
    "php": "php",
    "ex": "elixir",
    "exs": "elixir",
    "sql": "sql",
}

LANGUAGE_SEGMENTERS: Dict[str, Any] = {
    "python": PythonSegmenter,
    "js": JavaScriptSegmenter,
    "cobol": CobolSegmenter,
    "c": CSegmenter,
    "cpp": CPPSegmenter,
    "csharp": CSharpSegmenter,
    "ruby": RubySegmenter,
    "rust": RustSegmenter,
    "scala": ScalaSegmenter,
    "go": GoSegmenter,
    "kotlin": KotlinSegmenter,
    "lua": LuaSegmenter,
    "perl": PerlSegmenter,
    "ts": TypeScriptSegmenter,
    "java": JavaSegmenter,
    "php": PHPSegmenter,
    "elixir": ElixirSegmenter,
    "sql": SQLSegmenter,
}

Language = Literal[
    "cpp",
    "go",
    "java",
    "kotlin",
    "js",
    "ts",
    "php",
    "proto",
    "python",
    "rst",
    "ruby",
    "rust",
    "scala",
    "markdown",
    "latex",
    "html",
    "sol",
    "csharp",
    "cobol",
    "c",
    "lua",
    "perl",
    "elixir",
    "sql",
]


[docs] class LanguageParser(BaseBlobParser): """Parse using the respective programming language syntax. Each top-level function and class in the code is loaded into separate documents. Furthermore, an extra document is generated, containing the remaining top-level code that excludes the already segmented functions and classes. This approach can potentially improve the accuracy of QA models over source code. The supported languages for code parsing are: - C: "c" (*) - C++: "cpp" (*) - C#: "csharp" (*) - COBOL: "cobol" - Elixir: "elixir" - Go: "go" (*) - Java: "java" (*) - JavaScript: "js" (requires package `esprima`) - Kotlin: "kotlin" (*) - Lua: "lua" (*) - Perl: "perl" (*) - Python: "python" - Ruby: "ruby" (*) - Rust: "rust" (*) - Scala: "scala" (*) - SQL: "sql" (*) - TypeScript: "ts" (*) Items marked with (*) require the packages `tree_sitter` and `tree_sitter_languages`. It is straightforward to add support for additional languages using `tree_sitter`, although this currently requires modifying LangChain. The language used for parsing can be configured, along with the minimum number of lines required to activate the splitting based on syntax. If a language is not explicitly specified, `LanguageParser` will infer one from filename extensions, if present. Examples: .. code-block:: python from langchain_community.document_loaders.generic import GenericLoader from langchain_community.document_loaders.parsers import LanguageParser loader = GenericLoader.from_filesystem( "./code", glob="**/*", suffixes=[".py", ".js"], parser=LanguageParser() ) docs = loader.load() Example instantiations to manually select the language: .. code-block:: python loader = GenericLoader.from_filesystem( "./code", glob="**/*", suffixes=[".py"], parser=LanguageParser(language="python") ) Example instantiations to set number of lines threshold: .. code-block:: python loader = GenericLoader.from_filesystem( "./code", glob="**/*", suffixes=[".py"], parser=LanguageParser(parser_threshold=200) ) """
[docs] def __init__(self, language: Optional[Language] = None, parser_threshold: int = 0): """ Language parser that split code using the respective language syntax. Args: language: If None (default), it will try to infer language from source. parser_threshold: Minimum lines needed to activate parsing (0 by default). """ if language and language not in LANGUAGE_SEGMENTERS: raise Exception(f"No parser available for {language}") self.language = language self.parser_threshold = parser_threshold
[docs] def lazy_parse(self, blob: Blob) -> Iterator[Document]: code = blob.as_string() language = self.language or ( LANGUAGE_EXTENSIONS.get(blob.source.rsplit(".", 1)[-1]) if isinstance(blob.source, str) else None ) if language is None: yield Document( page_content=code, metadata={ "source": blob.source, }, ) return if self.parser_threshold >= len(code.splitlines()): yield Document( page_content=code, metadata={ "source": blob.source, "language": language, }, ) return self.Segmenter = LANGUAGE_SEGMENTERS[language] segmenter = self.Segmenter(blob.as_string()) if not segmenter.is_valid(): yield Document( page_content=code, metadata={ "source": blob.source, }, ) return for functions_classes in segmenter.extract_functions_classes(): yield Document( page_content=functions_classes, metadata={ "source": blob.source, "content_type": "functions_classes", "language": language, }, ) yield Document( page_content=segmenter.simplify_code(), metadata={ "source": blob.source, "content_type": "simplified_code", "language": language, }, )