langchain_community.document_loaders.pebblo ηš„ζΊδ»£η 

"""Pebblo's safe dataloader is a wrapper for document loaders"""

import logging
import os
import uuid
from importlib.metadata import version
from typing import Any, Dict, Iterable, Iterator, List, Optional

from langchain_core.documents import Document

from langchain_community.document_loaders.base import BaseLoader
from langchain_community.utilities.pebblo import (
    BATCH_SIZE_BYTES,
    PLUGIN_VERSION,
    App,
    Framework,
    IndexedDocument,
    PebbloLoaderAPIWrapper,
    generate_size_based_batches,
    get_full_path,
    get_loader_full_path,
    get_loader_type,
    get_runtime,
    get_source_size,
)

logger = logging.getLogger(__name__)


[docs] class PebbloSafeLoader(BaseLoader): """Pebblo Safe Loader class is a wrapper around document loaders enabling the data to be scrutinized. """ _discover_sent: bool = False
[docs] def __init__( self, langchain_loader: BaseLoader, name: str, owner: str = "", description: str = "", api_key: Optional[str] = None, load_semantic: bool = False, classifier_url: Optional[str] = None, *, classifier_location: str = "local", anonymize_snippets: bool = False, ): if not name or not isinstance(name, str): raise NameError("Must specify a valid name.") self.app_name = name self.load_id = str(uuid.uuid4()) self.loader = langchain_loader self.load_semantic = os.environ.get("PEBBLO_LOAD_SEMANTIC") or load_semantic self.owner = owner self.description = description self.source_path = get_loader_full_path(self.loader) self.docs: List[Document] = [] self.docs_with_id: List[IndexedDocument] = [] loader_name = str(type(self.loader)).split(".")[-1].split("'")[0] self.source_type = get_loader_type(loader_name) self.source_path_size = get_source_size(self.source_path) self.batch_size = BATCH_SIZE_BYTES self.loader_details = { "loader": loader_name, "source_path": self.source_path, "source_type": self.source_type, **( {"source_path_size": str(self.source_path_size)} if self.source_path_size > 0 else {} ), } # generate app self.app = self._get_app_details() # initialize Pebblo Loader API client self.pb_client = PebbloLoaderAPIWrapper( api_key=api_key, classifier_location=classifier_location, classifier_url=classifier_url, anonymize_snippets=anonymize_snippets, ) self.pb_client.send_loader_discover(self.app)
[docs] def load(self) -> List[Document]: """Load Documents. Returns: list: Documents fetched from load method of the wrapped `loader`. """ self.docs = self.loader.load() # Classify docs in batches self.classify_in_batches() return self.docs
[docs] def classify_in_batches(self) -> None: """ Classify documents in batches. This is to avoid API timeouts when sending large number of documents. Batches are generated based on the page_content size. """ batches: List[List[Document]] = generate_size_based_batches( self.docs, self.batch_size ) processed_docs: List[Document] = [] total_batches = len(batches) for i, batch in enumerate(batches): is_last_batch: bool = i == total_batches - 1 self.docs = batch self.docs_with_id = self._index_docs() classified_docs = self.pb_client.classify_documents( self.docs_with_id, self.app, self.loader_details, loading_end=is_last_batch, ) self._add_pebblo_specific_metadata(classified_docs) if self.load_semantic: batch_processed_docs = self._add_semantic_to_docs(classified_docs) else: batch_processed_docs = self._unindex_docs() processed_docs.extend(batch_processed_docs) self.docs = processed_docs
[docs] def lazy_load(self) -> Iterator[Document]: """Load documents in lazy fashion. Raises: NotImplementedError: raised when lazy_load id not implemented within wrapped loader. Yields: list: Documents from loader's lazy loading. """ try: doc_iterator = self.loader.lazy_load() except NotImplementedError as exc: err_str = f"{self.loader.__class__.__name__} does not implement lazy_load()" logger.error(err_str) raise NotImplementedError(err_str) from exc while True: try: doc = next(doc_iterator) except StopIteration: self.docs = [] break self.docs = list((doc,)) self.docs_with_id = self._index_docs() classified_doc = self.pb_client.classify_documents( self.docs_with_id, self.app, self.loader_details ) self._add_pebblo_specific_metadata(classified_doc) if self.load_semantic: self.docs = self._add_semantic_to_docs(classified_doc) else: self.docs = self._unindex_docs() yield self.docs[0]
[docs] @classmethod def set_discover_sent(cls) -> None: cls._discover_sent = True
def _get_app_details(self) -> App: """Fetch app details. Internal method. Returns: App: App details. """ framework, runtime = get_runtime() app = App( name=self.app_name, owner=self.owner, description=self.description, load_id=self.load_id, runtime=runtime, framework=framework, plugin_version=PLUGIN_VERSION, client_version=Framework( name="langchain_community", version=version("langchain_community"), ), ) return app def _index_docs(self) -> List[IndexedDocument]: """ Indexes the documents and returns a list of IndexedDocument objects. Returns: List[IndexedDocument]: A list of IndexedDocument objects with unique IDs. """ docs_with_id = [ IndexedDocument(pb_id=str(i), **doc.dict()) for i, doc in enumerate(self.docs) ] return docs_with_id def _add_semantic_to_docs(self, classified_docs: Dict) -> List[Document]: """ Adds semantic metadata to the given list of documents. Args: classified_docs (Dict): A dictionary of dictionaries containing the classified documents with pb_id as key. Returns: List[Document]: A list of Document objects with added semantic metadata. """ indexed_docs = { doc.pb_id: Document(page_content=doc.page_content, metadata=doc.metadata) for doc in self.docs_with_id } for classified_doc in classified_docs.values(): doc_id = classified_doc.get("pb_id") if doc_id in indexed_docs: self._add_semantic_to_doc(indexed_docs[doc_id], classified_doc) semantic_metadata_docs = [doc for doc in indexed_docs.values()] return semantic_metadata_docs def _unindex_docs(self) -> List[Document]: """ Converts a list of IndexedDocument objects to a list of Document objects. Returns: List[Document]: A list of Document objects. """ docs = [ Document(page_content=doc.page_content, metadata=doc.metadata) for i, doc in enumerate(self.docs_with_id) ] return docs def _add_semantic_to_doc(self, doc: Document, classified_doc: dict) -> Document: """ Adds semantic metadata to the given document in-place. Args: doc (Document): A Document object. classified_doc (dict): A dictionary containing the classified document. Returns: Document: The Document object with added semantic metadata. """ doc.metadata["pebblo_semantic_entities"] = list( classified_doc.get("entities", {}).keys() ) doc.metadata["pebblo_semantic_topics"] = list( classified_doc.get("topics", {}).keys() ) return doc def _add_pebblo_specific_metadata(self, classified_docs: dict) -> None: """Add Pebblo specific metadata to documents.""" for doc in self.docs_with_id: doc_metadata = doc.metadata if self.loader.__class__.__name__ == "SharePointLoader": doc_metadata["full_path"] = get_full_path( doc_metadata.get("source", self.source_path) ) else: doc_metadata["full_path"] = get_full_path( doc_metadata.get( "full_path", doc_metadata.get("source", self.source_path) ) ) doc_metadata["pb_checksum"] = classified_docs.get(doc.pb_id, {}).get( "pb_checksum", None )
[docs] class PebbloTextLoader(BaseLoader): """ Loader for text data. Since PebbloSafeLoader is a wrapper around document loaders, this loader is used to load text data directly into Documents. """
[docs] def __init__( self, texts: Iterable[str], *, source: Optional[str] = None, ids: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, metadatas: Optional[List[Dict[str, Any]]] = None, ) -> None: """ Args: texts: Iterable of text data. source: Source of the text data. Optional. Defaults to None. ids: List of unique identifiers for each text. Optional. Defaults to None. metadata: Metadata for all texts. Optional. Defaults to None. metadatas: List of metadata for each text. Optional. Defaults to None. """ self.texts = texts self.source = source self.ids = ids self.metadata = metadata self.metadatas = metadatas
[docs] def lazy_load(self) -> Iterator[Document]: """ Lazy load text data into Documents. Returns: Iterator of Documents """ for i, text in enumerate(self.texts): _id = None metadata = self.metadata or {} if self.metadatas and i < len(self.metadatas) and self.metadatas[i]: metadata.update(self.metadatas[i]) if self.ids and i < len(self.ids): _id = self.ids[i] yield Document(id=_id, page_content=text, metadata=metadata)
[docs] def load(self) -> List[Document]: """ Load text data into Documents. Returns: List of Documents """ documents = [] for doc in self.lazy_load(): documents.append(doc) return documents