langchain_community.document_loaders.sql_database ηš„ζΊδ»£η 

from typing import Any, Callable, Dict, Iterator, List, Optional, Sequence, Union

from sqlalchemy.engine import RowMapping
from sqlalchemy.sql.expression import Select

from langchain_community.docstore.document import Document
from langchain_community.document_loaders.base import BaseLoader
from langchain_community.utilities.sql_database import SQLDatabase


[docs] class SQLDatabaseLoader(BaseLoader): """ Load documents by querying database tables supported by SQLAlchemy. For talking to the database, the document loader uses the `SQLDatabase` utility from the LangChain integration toolkit. Each document represents one row of the result. """
[docs] def __init__( self, query: Union[str, Select], db: SQLDatabase, *, parameters: Optional[Dict[str, Any]] = None, page_content_mapper: Optional[Callable[..., str]] = None, metadata_mapper: Optional[Callable[..., Dict[str, Any]]] = None, source_columns: Optional[Sequence[str]] = None, include_rownum_into_metadata: bool = False, include_query_into_metadata: bool = False, ): """ Args: query: The query to execute. db: A LangChain `SQLDatabase`, wrapping an SQLAlchemy engine. sqlalchemy_kwargs: More keyword arguments for SQLAlchemy's `create_engine`. parameters: Optional. Parameters to pass to the query. page_content_mapper: Optional. Function to convert a row into a string to use as the `page_content` of the document. By default, the loader serializes the whole row into a string, including all columns. metadata_mapper: Optional. Function to convert a row into a dictionary to use as the `metadata` of the document. By default, no columns are selected into the metadata dictionary. source_columns: Optional. The names of the columns to use as the `source` within the metadata dictionary. include_rownum_into_metadata: Optional. Whether to include the row number into the metadata dictionary. Default: False. include_query_into_metadata: Optional. Whether to include the query expression into the metadata dictionary. Default: False. """ self.query = query self.db: SQLDatabase = db self.parameters = parameters or {} self.page_content_mapper = ( page_content_mapper or self.page_content_default_mapper ) self.metadata_mapper = metadata_mapper or self.metadata_default_mapper self.source_columns = source_columns self.include_rownum_into_metadata = include_rownum_into_metadata self.include_query_into_metadata = include_query_into_metadata
[docs] def lazy_load(self) -> Iterator[Document]: try: import sqlalchemy as sa except ImportError: raise ImportError( "Could not import sqlalchemy python package. " "Please install it with `pip install sqlalchemy`." ) # Querying in `cursor` fetch mode will return an SQLAlchemy `Result` instance. result: sa.Result[Any] # Invoke the database query. if isinstance(self.query, sa.SelectBase): result = self.db._execute( # type: ignore[assignment] self.query, fetch="cursor", parameters=self.parameters ) query_sql = str(self.query.compile(bind=self.db._engine)) elif isinstance(self.query, str): result = self.db._execute( # type: ignore[assignment] sa.text(self.query), fetch="cursor", parameters=self.parameters ) query_sql = self.query else: raise TypeError(f"Unable to process query of unknown type: {self.query}") # Iterate database result rows and generate list of documents. for i, row in enumerate(result.mappings()): page_content = self.page_content_mapper(row) metadata = self.metadata_mapper(row) if self.include_rownum_into_metadata: metadata["row"] = i if self.include_query_into_metadata: metadata["query"] = query_sql source_values = [] for column, value in row.items(): if self.source_columns and column in self.source_columns: source_values.append(value) if source_values: metadata["source"] = ",".join(source_values) yield Document(page_content=page_content, metadata=metadata)
[docs] @staticmethod def page_content_default_mapper( row: RowMapping, column_names: Optional[List[str]] = None ) -> str: """ A reasonable default function to convert a record into a "page content" string. """ if column_names is None: column_names = list(row.keys()) return "\n".join( f"{column}: {value}" for column, value in row.items() if column in column_names )
[docs] @staticmethod def metadata_default_mapper( row: RowMapping, column_names: Optional[List[str]] = None ) -> Dict[str, Any]: """ A reasonable default function to convert a record into a "metadata" dictionary. """ if column_names is None: return {} metadata: Dict[str, Any] = {} for column, value in row.items(): if column in column_names: metadata[column] = value return metadata