langchain_community.embeddings.baichuan ηš„ζΊδ»£η 

from typing import Any, List, Optional

import requests
from langchain_core.embeddings import Embeddings
from langchain_core.utils import (
    secret_from_env,
)
from pydantic import (
    BaseModel,
    ConfigDict,
    Field,
    SecretStr,
    model_validator,
)
from requests import RequestException
from typing_extensions import Self

BAICHUAN_API_URL: str = "https://api.baichuan-ai.com/v1/embeddings"

# BaichuanTextEmbeddings is an embedding model provided by Baichuan Inc. (https://www.baichuan-ai.com/home).
# As of today (Jan 25th, 2024) BaichuanTextEmbeddings ranks #1 in C-MTEB
# (Chinese Multi-Task Embedding Benchmark) leaderboard.
# Leaderboard (Under Overall -> Chinese section): https://huggingface.co/spaces/mteb/leaderboard

# Official Website: https://platform.baichuan-ai.com/docs/text-Embedding
# An API-key is required to use this embedding model. You can get one by registering
# at https://platform.baichuan-ai.com/docs/text-Embedding.
# BaichuanTextEmbeddings support 512 token window and produces vectors with
# 1024 dimensions.


# NOTE!! BaichuanTextEmbeddings only supports Chinese text embedding.
# Multi-language support is coming soon.
[docs] class BaichuanTextEmbeddings(BaseModel, Embeddings): """Baichuan Text Embedding models. Setup: To use, you should set the environment variable ``BAICHUAN_API_KEY`` to your API key or pass it as a named parameter to the constructor. .. code-block:: bash export BAICHUAN_API_KEY="your-api-key" Instantiate: .. code-block:: python from langchain_community.embeddings import BaichuanTextEmbeddings embeddings = BaichuanTextEmbeddings() Embed: .. code-block:: python # embed the documents vectors = embeddings.embed_documents([text1, text2, ...]) # embed the query vectors = embeddings.embed_query(text) """ # noqa: E501 session: Any = None #: :meta private: model_name: str = Field(default="Baichuan-Text-Embedding", alias="model") """The model used to embed the documents.""" baichuan_api_key: SecretStr = Field( alias="api_key", default_factory=secret_from_env(["BAICHUAN_API_KEY", "BAICHUAN_AUTH_TOKEN"]), ) """Automatically inferred from env var `BAICHUAN_API_KEY` if not provided.""" chunk_size: int = 16 """Chunk size when multiple texts are input""" model_config = ConfigDict(populate_by_name=True, protected_namespaces=()) @model_validator(mode="after") def validate_environment(self) -> Self: """Validate that auth token exists in environment.""" session = requests.Session() session.headers.update( { "Authorization": f"Bearer {self.baichuan_api_key.get_secret_value()}", "Accept-Encoding": "identity", "Content-type": "application/json", } ) self.session = session return self def _embed(self, texts: List[str]) -> Optional[List[List[float]]]: """Internal method to call Baichuan Embedding API and return embeddings. Args: texts: A list of texts to embed. Returns: A list of list of floats representing the embeddings, or None if an error occurs. """ chunk_texts = [ texts[i : i + self.chunk_size] for i in range(0, len(texts), self.chunk_size) ] embed_results = [] for chunk in chunk_texts: response = self.session.post( BAICHUAN_API_URL, json={"input": chunk, "model": self.model_name} ) # Raise exception if response status code from 400 to 600 response.raise_for_status() # Check if the response status code indicates success if response.status_code == 200: resp = response.json() embeddings = resp.get("data", []) # Sort resulting embeddings by index sorted_embeddings = sorted(embeddings, key=lambda e: e.get("index", 0)) # Return just the embeddings embed_results.extend( [result.get("embedding", []) for result in sorted_embeddings] ) else: # Log error or handle unsuccessful response appropriately # Handle 100 <= status_code < 400, not include 200 raise RequestException( f"Error: Received status code {response.status_code} from " "`BaichuanEmbedding` API" ) return embed_results
[docs] def embed_documents(self, texts: List[str]) -> Optional[List[List[float]]]: # type: ignore[override] """Public method to get embeddings for a list of documents. Args: texts: The list of texts to embed. Returns: A list of embeddings, one for each text, or None if an error occurs. """ return self._embed(texts)
[docs] def embed_query(self, text: str) -> Optional[List[float]]: # type: ignore[override] """Public method to get embedding for a single query text. Args: text: The text to embed. Returns: Embeddings for the text, or None if an error occurs. """ result = self._embed([text]) return result[0] if result is not None else None