langchain_community.embeddings.baichuan ηζΊδ»£η
from typing import Any, List, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.utils import (
secret_from_env,
)
from pydantic import (
BaseModel,
ConfigDict,
Field,
SecretStr,
model_validator,
)
from requests import RequestException
from typing_extensions import Self
BAICHUAN_API_URL: str = "https://api.baichuan-ai.com/v1/embeddings"
# BaichuanTextEmbeddings is an embedding model provided by Baichuan Inc. (https://www.baichuan-ai.com/home).
# As of today (Jan 25th, 2024) BaichuanTextEmbeddings ranks #1 in C-MTEB
# (Chinese Multi-Task Embedding Benchmark) leaderboard.
# Leaderboard (Under Overall -> Chinese section): https://huggingface.co/spaces/mteb/leaderboard
# Official Website: https://platform.baichuan-ai.com/docs/text-Embedding
# An API-key is required to use this embedding model. You can get one by registering
# at https://platform.baichuan-ai.com/docs/text-Embedding.
# BaichuanTextEmbeddings support 512 token window and produces vectors with
# 1024 dimensions.
# NOTE!! BaichuanTextEmbeddings only supports Chinese text embedding.
# Multi-language support is coming soon.
[docs]
class BaichuanTextEmbeddings(BaseModel, Embeddings):
"""Baichuan Text Embedding models.
Setup:
To use, you should set the environment variable ``BAICHUAN_API_KEY`` to
your API key or pass it as a named parameter to the constructor.
.. code-block:: bash
export BAICHUAN_API_KEY="your-api-key"
Instantiate:
.. code-block:: python
from langchain_community.embeddings import BaichuanTextEmbeddings
embeddings = BaichuanTextEmbeddings()
Embed:
.. code-block:: python
# embed the documents
vectors = embeddings.embed_documents([text1, text2, ...])
# embed the query
vectors = embeddings.embed_query(text)
""" # noqa: E501
session: Any = None #: :meta private:
model_name: str = Field(default="Baichuan-Text-Embedding", alias="model")
"""The model used to embed the documents."""
baichuan_api_key: SecretStr = Field(
alias="api_key",
default_factory=secret_from_env(["BAICHUAN_API_KEY", "BAICHUAN_AUTH_TOKEN"]),
)
"""Automatically inferred from env var `BAICHUAN_API_KEY` if not provided."""
chunk_size: int = 16
"""Chunk size when multiple texts are input"""
model_config = ConfigDict(populate_by_name=True, protected_namespaces=())
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate that auth token exists in environment."""
session = requests.Session()
session.headers.update(
{
"Authorization": f"Bearer {self.baichuan_api_key.get_secret_value()}",
"Accept-Encoding": "identity",
"Content-type": "application/json",
}
)
self.session = session
return self
def _embed(self, texts: List[str]) -> Optional[List[List[float]]]:
"""Internal method to call Baichuan Embedding API and return embeddings.
Args:
texts: A list of texts to embed.
Returns:
A list of list of floats representing the embeddings, or None if an
error occurs.
"""
chunk_texts = [
texts[i : i + self.chunk_size]
for i in range(0, len(texts), self.chunk_size)
]
embed_results = []
for chunk in chunk_texts:
response = self.session.post(
BAICHUAN_API_URL, json={"input": chunk, "model": self.model_name}
)
# Raise exception if response status code from 400 to 600
response.raise_for_status()
# Check if the response status code indicates success
if response.status_code == 200:
resp = response.json()
embeddings = resp.get("data", [])
# Sort resulting embeddings by index
sorted_embeddings = sorted(embeddings, key=lambda e: e.get("index", 0))
# Return just the embeddings
embed_results.extend(
[result.get("embedding", []) for result in sorted_embeddings]
)
else:
# Log error or handle unsuccessful response appropriately
# Handle 100 <= status_code < 400, not include 200
raise RequestException(
f"Error: Received status code {response.status_code} from "
"`BaichuanEmbedding` API"
)
return embed_results
[docs]
def embed_documents(self, texts: List[str]) -> Optional[List[List[float]]]: # type: ignore[override]
"""Public method to get embeddings for a list of documents.
Args:
texts: The list of texts to embed.
Returns:
A list of embeddings, one for each text, or None if an error occurs.
"""
return self._embed(texts)
[docs]
def embed_query(self, text: str) -> Optional[List[float]]: # type: ignore[override]
"""Public method to get embedding for a single query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text, or None if an error occurs.
"""
result = self._embed([text])
return result[0] if result is not None else None