langchain_community.embeddings.dashscope ηš„ζΊδ»£η 

from __future__ import annotations

import logging
from typing import (
    Any,
    Callable,
    Dict,
    List,
    Optional,
)

from langchain_core.embeddings import Embeddings
from langchain_core.utils import get_from_dict_or_env
from pydantic import BaseModel, ConfigDict, model_validator
from requests.exceptions import HTTPError
from tenacity import (
    before_sleep_log,
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

logger = logging.getLogger(__name__)

BATCH_SIZE = {"text-embedding-v1": 25, "text-embedding-v2": 25, "text-embedding-v3": 6}


def _create_retry_decorator(embeddings: DashScopeEmbeddings) -> Callable[[Any], Any]:
    multiplier = 1
    min_seconds = 1
    max_seconds = 4
    # Wait 2^x * 1 second between each retry starting with
    # 1 seconds, then up to 4 seconds, then 4 seconds afterwards
    return retry(
        reraise=True,
        stop=stop_after_attempt(embeddings.max_retries),
        wait=wait_exponential(multiplier, min=min_seconds, max=max_seconds),
        retry=(retry_if_exception_type(HTTPError)),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )


[docs] def embed_with_retry(embeddings: DashScopeEmbeddings, **kwargs: Any) -> Any: """Use tenacity to retry the embedding call.""" retry_decorator = _create_retry_decorator(embeddings) @retry_decorator def _embed_with_retry(**kwargs: Any) -> Any: result = [] i = 0 input_data = kwargs["input"] input_len = len(input_data) if isinstance(input_data, list) else 1 batch_size = BATCH_SIZE.get(kwargs["model"], 25) while i < input_len: kwargs["input"] = ( input_data[i : i + batch_size] if isinstance(input_data, list) else input_data ) resp = embeddings.client.call(**kwargs) if resp.status_code == 200: result += resp.output["embeddings"] elif resp.status_code in [400, 401]: raise ValueError( f"status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}" ) else: raise HTTPError( f"HTTP error occurred: status_code: {resp.status_code} \n " f"code: {resp.code} \n message: {resp.message}", response=resp, ) i += batch_size return result return _embed_with_retry(**kwargs)
[docs] class DashScopeEmbeddings(BaseModel, Embeddings): """DashScope embedding models. To use, you should have the ``dashscope`` python package installed, and the environment variable ``DASHSCOPE_API_KEY`` set with your API key or pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.embeddings import DashScopeEmbeddings embeddings = DashScopeEmbeddings(dashscope_api_key="my-api-key") Example: .. code-block:: python import os os.environ["DASHSCOPE_API_KEY"] = "your DashScope API KEY" from langchain_community.embeddings.dashscope import DashScopeEmbeddings embeddings = DashScopeEmbeddings( model="text-embedding-v1", ) text = "This is a test query." query_result = embeddings.embed_query(text) """ client: Any = None #: :meta private: """The DashScope client.""" model: str = "text-embedding-v1" dashscope_api_key: Optional[str] = None max_retries: int = 5 """Maximum number of retries to make when generating.""" model_config = ConfigDict( extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: import dashscope """Validate that api key and python package exists in environment.""" values["dashscope_api_key"] = get_from_dict_or_env( values, "dashscope_api_key", "DASHSCOPE_API_KEY" ) dashscope.api_key = values["dashscope_api_key"] try: import dashscope values["client"] = dashscope.TextEmbedding except ImportError: raise ImportError( "Could not import dashscope python package. " "Please install it with `pip install dashscope`." ) return values
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to DashScope's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = embed_with_retry( self, input=texts, text_type="document", model=self.model ) embedding_list = [item["embedding"] for item in embeddings] return embedding_list
[docs] def embed_query(self, text: str) -> List[float]: """Call out to DashScope's embedding endpoint for embedding query text. Args: text: The text to embed. Returns: Embedding for the text. """ embedding = embed_with_retry( self, input=text, text_type="query", model=self.model )[0]["embedding"] return embedding