langchain_community.embeddings.deepinfra ηζΊδ»£η
from typing import Any, Dict, List, Mapping, Optional
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.utils import get_from_dict_or_env, pre_init
from pydantic import BaseModel, ConfigDict
DEFAULT_MODEL_ID = "sentence-transformers/clip-ViT-B-32"
MAX_BATCH_SIZE = 1024
[docs]
class DeepInfraEmbeddings(BaseModel, Embeddings):
"""Deep Infra's embedding inference service.
To use, you should have the
environment variable ``DEEPINFRA_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
There are multiple embeddings models available,
see https://deepinfra.com/models?type=embeddings.
Example:
.. code-block:: python
from langchain_community.embeddings import DeepInfraEmbeddings
deepinfra_emb = DeepInfraEmbeddings(
model_id="sentence-transformers/clip-ViT-B-32",
deepinfra_api_token="my-api-key"
)
r1 = deepinfra_emb.embed_documents(
[
"Alpha is the first letter of Greek alphabet",
"Beta is the second letter of Greek alphabet",
]
)
r2 = deepinfra_emb.embed_query(
"What is the second letter of Greek alphabet"
)
"""
model_id: str = DEFAULT_MODEL_ID
"""Embeddings model to use."""
normalize: bool = False
"""whether to normalize the computed embeddings"""
embed_instruction: str = "passage: "
"""Instruction used to embed documents."""
query_instruction: str = "query: "
"""Instruction used to embed the query."""
model_kwargs: Optional[dict] = None
"""Other model keyword args"""
deepinfra_api_token: Optional[str] = None
"""API token for Deep Infra. If not provided, the token is
fetched from the environment variable 'DEEPINFRA_API_TOKEN'."""
batch_size: int = MAX_BATCH_SIZE
"""Batch size for embedding requests."""
model_config = ConfigDict(extra="forbid", protected_namespaces=())
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
deepinfra_api_token = get_from_dict_or_env(
values, "deepinfra_api_token", "DEEPINFRA_API_TOKEN"
)
values["deepinfra_api_token"] = deepinfra_api_token
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {"model_id": self.model_id}
def _embed(self, input: List[str]) -> List[List[float]]:
_model_kwargs = self.model_kwargs or {}
# HTTP headers for authorization
headers = {
"Authorization": f"bearer {self.deepinfra_api_token}",
"Content-Type": "application/json",
}
# send request
try:
res = requests.post(
f"https://api.deepinfra.com/v1/inference/{self.model_id}",
headers=headers,
json={"inputs": input, "normalize": self.normalize, **_model_kwargs},
)
except requests.exceptions.RequestException as e:
raise ValueError(f"Error raised by inference endpoint: {e}")
if res.status_code != 200:
raise ValueError(
"Error raised by inference API HTTP code: %s, %s"
% (res.status_code, res.text)
)
try:
t = res.json()
embeddings = t["embeddings"]
except requests.exceptions.JSONDecodeError as e:
raise ValueError(
f"Error raised by inference API: {e}.\nResponse: {res.text}"
)
return embeddings
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed documents using a Deep Infra deployed embedding model.
For larger batches, the input list of texts is chunked into smaller
batches to avoid exceeding the maximum request size.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings = []
instruction_pairs = [f"{self.embed_instruction}{text}" for text in texts]
chunks = [
instruction_pairs[i : i + self.batch_size]
for i in range(0, len(instruction_pairs), self.batch_size)
]
for chunk in chunks:
embeddings += self._embed(chunk)
return embeddings
[docs]
def embed_query(self, text: str) -> List[float]:
"""Embed a query using a Deep Infra deployed embedding model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
instruction_pair = f"{self.query_instruction}{text}"
embedding = self._embed([instruction_pair])[0]
return embedding