langchain_community.embeddings.hunyuan ηζΊδ»£η
import json
from typing import Any, Dict, List, Literal, Optional, Type
from langchain_core.embeddings import Embeddings
from langchain_core.runnables.config import run_in_executor
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from pydantic import BaseModel, Field, SecretStr, model_validator
[docs]
class HunyuanEmbeddings(Embeddings, BaseModel):
"""Tencent Hunyuan embedding models API by Tencent.
For more information, see https://cloud.tencent.com/document/product/1729
"""
hunyuan_secret_id: Optional[SecretStr] = Field(alias="secret_id", default=None)
"""Hunyuan Secret ID"""
hunyuan_secret_key: Optional[SecretStr] = Field(alias="secret_key", default=None)
"""Hunyuan Secret Key"""
region: Literal["ap-guangzhou", "ap-beijing"] = "ap-guangzhou"
"""The region of hunyuan service."""
embedding_ctx_length: int = 1024
"""The max embedding context length of hunyuan embedding (defaults to 1024)."""
show_progress_bar: bool = False
"""Show progress bar when embedding. Default is False."""
client: Any = Field(default=None, exclude=True)
"""The tencentcloud client."""
request_cls: Optional[Type] = Field(default=None, exclude=True)
"""The request class of tencentcloud sdk."""
@model_validator(mode="before")
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["hunyuan_secret_id"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"hunyuan_secret_id",
"HUNYUAN_SECRET_ID",
)
)
values["hunyuan_secret_key"] = convert_to_secret_str(
get_from_dict_or_env(
values,
"hunyuan_secret_key",
"HUNYUAN_SECRET_KEY",
)
)
try:
from tencentcloud.common.credential import Credential
from tencentcloud.common.profile.client_profile import ClientProfile
from tencentcloud.hunyuan.v20230901.hunyuan_client import HunyuanClient
from tencentcloud.hunyuan.v20230901.models import GetEmbeddingRequest
except ImportError:
raise ImportError(
"Could not import tencentcloud sdk python package. Please install it "
'with `pip install "tencentcloud-sdk-python>=3.0.1139"`.'
)
client_profile = ClientProfile()
client_profile.httpProfile.pre_conn_pool_size = 3
credential = Credential(
values["hunyuan_secret_id"].get_secret_value(),
values["hunyuan_secret_key"].get_secret_value(),
)
values["request_cls"] = GetEmbeddingRequest
values["client"] = HunyuanClient(credential, values["region"], client_profile)
return values
def _embed_text(self, text: str) -> List[float]:
if self.request_cls is None:
raise AssertionError("Request class is not initialized.")
request = self.request_cls()
request.Input = text
response = self.client.GetEmbedding(request)
_response: Dict[str, Any] = json.loads(response.to_json_string())
data: Optional[List[Dict[str, Any]]] = _response.get("Data")
if not data:
raise RuntimeError("Occur hunyuan embedding error: Data is empty")
embedding = data[0].get("Embedding")
if not embedding:
raise RuntimeError("Occur hunyuan embedding error: Embedding is empty")
return embedding
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
embeddings = []
if self.show_progress_bar:
try:
from tqdm import tqdm
except ImportError as e:
raise ImportError(
"Package tqdm must be installed if show_progress_bar=True. "
"Please install with 'pip install tqdm' or set "
"show_progress_bar=False."
) from e
_iter = tqdm(iterable=texts, desc="Hunyuan Embedding")
else:
_iter = texts
for text in _iter:
embeddings.append(self.embed_query(text))
return embeddings
[docs]
def embed_query(self, text: str) -> List[float]:
"""Embed query text."""
return self._embed_text(text)
[docs]
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Asynchronous Embed search docs."""
return await run_in_executor(None, self.embed_documents, texts)
[docs]
async def aembed_query(self, text: str) -> List[float]:
"""Asynchronous Embed query text."""
return await run_in_executor(None, self.embed_query, text)