langchain_community.embeddings.hunyuan ηš„ζΊδ»£η 

import json
from typing import Any, Dict, List, Literal, Optional, Type

from langchain_core.embeddings import Embeddings
from langchain_core.runnables.config import run_in_executor
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from pydantic import BaseModel, Field, SecretStr, model_validator


[docs] class HunyuanEmbeddings(Embeddings, BaseModel): """Tencent Hunyuan embedding models API by Tencent. For more information, see https://cloud.tencent.com/document/product/1729 """ hunyuan_secret_id: Optional[SecretStr] = Field(alias="secret_id", default=None) """Hunyuan Secret ID""" hunyuan_secret_key: Optional[SecretStr] = Field(alias="secret_key", default=None) """Hunyuan Secret Key""" region: Literal["ap-guangzhou", "ap-beijing"] = "ap-guangzhou" """The region of hunyuan service.""" embedding_ctx_length: int = 1024 """The max embedding context length of hunyuan embedding (defaults to 1024).""" show_progress_bar: bool = False """Show progress bar when embedding. Default is False.""" client: Any = Field(default=None, exclude=True) """The tencentcloud client.""" request_cls: Optional[Type] = Field(default=None, exclude=True) """The request class of tencentcloud sdk.""" @model_validator(mode="before") def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" values["hunyuan_secret_id"] = convert_to_secret_str( get_from_dict_or_env( values, "hunyuan_secret_id", "HUNYUAN_SECRET_ID", ) ) values["hunyuan_secret_key"] = convert_to_secret_str( get_from_dict_or_env( values, "hunyuan_secret_key", "HUNYUAN_SECRET_KEY", ) ) try: from tencentcloud.common.credential import Credential from tencentcloud.common.profile.client_profile import ClientProfile from tencentcloud.hunyuan.v20230901.hunyuan_client import HunyuanClient from tencentcloud.hunyuan.v20230901.models import GetEmbeddingRequest except ImportError: raise ImportError( "Could not import tencentcloud sdk python package. Please install it " 'with `pip install "tencentcloud-sdk-python>=3.0.1139"`.' ) client_profile = ClientProfile() client_profile.httpProfile.pre_conn_pool_size = 3 credential = Credential( values["hunyuan_secret_id"].get_secret_value(), values["hunyuan_secret_key"].get_secret_value(), ) values["request_cls"] = GetEmbeddingRequest values["client"] = HunyuanClient(credential, values["region"], client_profile) return values def _embed_text(self, text: str) -> List[float]: if self.request_cls is None: raise AssertionError("Request class is not initialized.") request = self.request_cls() request.Input = text response = self.client.GetEmbedding(request) _response: Dict[str, Any] = json.loads(response.to_json_string()) data: Optional[List[Dict[str, Any]]] = _response.get("Data") if not data: raise RuntimeError("Occur hunyuan embedding error: Data is empty") embedding = data[0].get("Embedding") if not embedding: raise RuntimeError("Occur hunyuan embedding error: Embedding is empty") return embedding
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed search docs.""" embeddings = [] if self.show_progress_bar: try: from tqdm import tqdm except ImportError as e: raise ImportError( "Package tqdm must be installed if show_progress_bar=True. " "Please install with 'pip install tqdm' or set " "show_progress_bar=False." ) from e _iter = tqdm(iterable=texts, desc="Hunyuan Embedding") else: _iter = texts for text in _iter: embeddings.append(self.embed_query(text)) return embeddings
[docs] def embed_query(self, text: str) -> List[float]: """Embed query text.""" return self._embed_text(text)
[docs] async def aembed_documents(self, texts: List[str]) -> List[List[float]]: """Asynchronous Embed search docs.""" return await run_in_executor(None, self.embed_documents, texts)
[docs] async def aembed_query(self, text: str) -> List[float]: """Asynchronous Embed query text.""" return await run_in_executor(None, self.embed_query, text)