langchain_community.embeddings.laser ηζΊδ»£η
from typing import Any, Dict, List, Optional, cast
import numpy as np
from langchain_core.embeddings import Embeddings
from langchain_core.utils import pre_init
from pydantic import BaseModel, ConfigDict
LASER_MULTILINGUAL_MODEL: str = "laser2"
[docs]
class LaserEmbeddings(BaseModel, Embeddings):
"""LASER Language-Agnostic SEntence Representations.
LASER is a Python library developed by the Meta AI Research team
and used for creating multilingual sentence embeddings for over 147 languages
as of 2/25/2024
See more documentation at:
* https://github.com/facebookresearch/LASER/
* https://github.com/facebookresearch/LASER/tree/main/laser_encoders
* https://arxiv.org/abs/2205.12654
To use this class, you must install the `laser_encoders` Python package.
`pip install laser_encoders`
Example:
from laser_encoders import LaserEncoderPipeline
encoder = LaserEncoderPipeline(lang="eng_Latn")
embeddings = encoder.encode_sentences(["Hello", "World"])
"""
lang: Optional[str] = None
"""The language or language code you'd like to use
If empty, this implementation will default
to using a multilingual earlier LASER encoder model (called laser2)
Find the list of supported languages at
https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200
"""
_encoder_pipeline: Any = None # : :meta private:
model_config = ConfigDict(
extra="forbid",
)
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that laser_encoders has been installed."""
try:
from laser_encoders import LaserEncoderPipeline
lang = values.get("lang")
if lang:
encoder_pipeline = LaserEncoderPipeline(lang=lang)
else:
encoder_pipeline = LaserEncoderPipeline(laser=LASER_MULTILINGUAL_MODEL)
values["_encoder_pipeline"] = encoder_pipeline
except ImportError as e:
raise ImportError(
"Could not import 'laser_encoders' Python package. "
"Please install it with `pip install laser_encoders`."
) from e
return values
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Generate embeddings for documents using LASER.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
embeddings: np.ndarray
embeddings = self._encoder_pipeline.encode_sentences(texts)
return cast(List[List[float]], embeddings.tolist())
[docs]
def embed_query(self, text: str) -> List[float]:
"""Generate single query text embeddings using LASER.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
query_embeddings: np.ndarray
query_embeddings = self._encoder_pipeline.encode_sentences([text])
return cast(List[List[float]], query_embeddings.tolist())[0]