langchain_community.embeddings.minimax ηš„ζΊδ»£η 

from __future__ import annotations

import logging
from typing import Any, Callable, Dict, List, Optional

import requests
from langchain_core.embeddings import Embeddings
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
from pydantic import BaseModel, ConfigDict, Field, SecretStr
from tenacity import (
    before_sleep_log,
    retry,
    stop_after_attempt,
    wait_exponential,
)

logger = logging.getLogger(__name__)


def _create_retry_decorator() -> Callable[[Any], Any]:
    """Returns a tenacity retry decorator."""

    multiplier = 1
    min_seconds = 1
    max_seconds = 4
    max_retries = 6

    return retry(
        reraise=True,
        stop=stop_after_attempt(max_retries),
        wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )


[docs] def embed_with_retry(embeddings: MiniMaxEmbeddings, *args: Any, **kwargs: Any) -> Any: """Use tenacity to retry the completion call.""" retry_decorator = _create_retry_decorator() @retry_decorator def _embed_with_retry(*args: Any, **kwargs: Any) -> Any: return embeddings.embed(*args, **kwargs) return _embed_with_retry(*args, **kwargs)
[docs] class MiniMaxEmbeddings(BaseModel, Embeddings): """MiniMax embedding model integration. Setup: To use, you should have the environment variable ``MINIMAX_GROUP_ID`` and ``MINIMAX_API_KEY`` set with your API token. .. code-block:: bash export MINIMAX_API_KEY="your-api-key" export MINIMAX_GROUP_ID="your-group-id" Key init args β€” completion params: model: Optional[str] Name of ZhipuAI model to use. api_key: Optional[str] Automatically inferred from env var `MINIMAX_GROUP_ID` if not provided. group_id: Optional[str] Automatically inferred from env var `MINIMAX_GROUP_ID` if not provided. See full list of supported init args and their descriptions in the params section. Instantiate: .. code-block:: python from langchain_community.embeddings import MiniMaxEmbeddings embed = MiniMaxEmbeddings( model="embo-01", # api_key="...", # group_id="...", # other ) Embed single text: .. code-block:: python input_text = "The meaning of life is 42" embed.embed_query(input_text) .. code-block:: python [0.03016241, 0.03617699, 0.0017198119, -0.002061239, -0.00029994643, -0.0061320597, -0.0043635326, ...] Embed multiple text: .. code-block:: python input_texts = ["This is a test query1.", "This is a test query2."] embed.embed_documents(input_texts) .. code-block:: python [ [-0.0021588828, -0.007608119, 0.029349545, -0.0038194496, 0.008031177, -0.004529633, -0.020150753, ...], [ -0.00023150232, -0.011122423, 0.016930554, 0.0083089275, 0.012633711, 0.019683322, -0.005971041, ...] ] """ # noqa: E501 endpoint_url: str = "https://api.minimax.chat/v1/embeddings" """Endpoint URL to use.""" model: str = "embo-01" """Embeddings model name to use.""" embed_type_db: str = "db" """For embed_documents""" embed_type_query: str = "query" """For embed_query""" minimax_group_id: Optional[str] = Field(default=None, alias="group_id") """Group ID for MiniMax API.""" minimax_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") """API Key for MiniMax API.""" model_config = ConfigDict( populate_by_name=True, extra="forbid", )
[docs] @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that group id and api key exists in environment.""" minimax_group_id = get_from_dict_or_env( values, ["minimax_group_id", "group_id"], "MINIMAX_GROUP_ID" ) minimax_api_key = convert_to_secret_str( get_from_dict_or_env( values, ["minimax_api_key", "api_key"], "MINIMAX_API_KEY" ) ) values["minimax_group_id"] = minimax_group_id values["minimax_api_key"] = minimax_api_key return values
[docs] def embed( self, texts: List[str], embed_type: str, ) -> List[List[float]]: payload = { "model": self.model, "type": embed_type, "texts": texts, } # HTTP headers for authorization headers = { "Authorization": f"Bearer {self.minimax_api_key.get_secret_value()}", # type: ignore[union-attr] "Content-Type": "application/json", } params = { "GroupId": self.minimax_group_id, } # send request response = requests.post( self.endpoint_url, params=params, headers=headers, json=payload ) parsed_response = response.json() # check for errors if parsed_response["base_resp"]["status_code"] != 0: raise ValueError( f"MiniMax API returned an error: {parsed_response['base_resp']}" ) embeddings = parsed_response["vectors"] return embeddings
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using a MiniMax embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ embeddings = embed_with_retry(self, texts=texts, embed_type=self.embed_type_db) return embeddings
[docs] def embed_query(self, text: str) -> List[float]: """Embed a query using a MiniMax embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ embeddings = embed_with_retry( self, texts=[text], embed_type=self.embed_type_query ) return embeddings[0]