langchain_community.embeddings.model2vec ηζΊδ»£η
"""Wrapper around model2vec embedding models."""
from typing import List
from langchain_core.embeddings import Embeddings
[docs]
class Model2vecEmbeddings(Embeddings):
"""Model2Vec embedding models.
Install model2vec first, run 'pip install -U model2vec'.
The github repository for model2vec is : https://github.com/MinishLab/model2vec
Example:
.. code-block:: python
from langchain_community.embeddings import Model2vecEmbeddings
embedding = Model2vecEmbeddings("minishlab/potion-base-8M")
embedding.embed_documents([
"It's dangerous to go alone!",
"It's a secret to everybody.",
])
embedding.embed_query(
"Take this with you."
)
"""
[docs]
def __init__(self, model: str):
"""Initialize embeddings.
Args:
model: Model name.
"""
try:
from model2vec import StaticModel
except ImportError as e:
raise ImportError(
"Unable to import model2vec, please install with "
"`pip install -U model2vec`."
) from e
self._model = StaticModel.from_pretrained(model)
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed documents using the model2vec embeddings model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
return self._model.encode(texts).tolist()
[docs]
def embed_query(self, text: str) -> List[float]:
"""Embed a query using the model2vec embeddings model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self._model.encode(text).tolist()