langchain_community.embeddings.model2vec ηš„ζΊδ»£η 

"""Wrapper around model2vec embedding models."""

from typing import List

from langchain_core.embeddings import Embeddings


[docs] class Model2vecEmbeddings(Embeddings): """Model2Vec embedding models. Install model2vec first, run 'pip install -U model2vec'. The github repository for model2vec is : https://github.com/MinishLab/model2vec Example: .. code-block:: python from langchain_community.embeddings import Model2vecEmbeddings embedding = Model2vecEmbeddings("minishlab/potion-base-8M") embedding.embed_documents([ "It's dangerous to go alone!", "It's a secret to everybody.", ]) embedding.embed_query( "Take this with you." ) """
[docs] def __init__(self, model: str): """Initialize embeddings. Args: model: Model name. """ try: from model2vec import StaticModel except ImportError as e: raise ImportError( "Unable to import model2vec, please install with " "`pip install -U model2vec`." ) from e self._model = StaticModel.from_pretrained(model)
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Embed documents using the model2vec embeddings model. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ return self._model.encode(texts).tolist()
[docs] def embed_query(self, text: str) -> List[float]: """Embed a query using the model2vec embeddings model. Args: text: The text to embed. Returns: Embeddings for the text. """ return self._model.encode(text).tolist()