langchain_community.embeddings.oci_generative_ai ηš„ζΊδ»£η 

from enum import Enum
from typing import Any, Dict, Iterator, List, Mapping, Optional

from langchain_core.embeddings import Embeddings
from langchain_core.utils import pre_init
from pydantic import BaseModel, ConfigDict

CUSTOM_ENDPOINT_PREFIX = "ocid1.generativeaiendpoint"


[docs] class OCIAuthType(Enum): """OCI authentication types as enumerator.""" API_KEY = 1 SECURITY_TOKEN = 2 INSTANCE_PRINCIPAL = 3 RESOURCE_PRINCIPAL = 4
[docs] class OCIGenAIEmbeddings(BaseModel, Embeddings): """OCI embedding models. To authenticate, the OCI client uses the methods described in https://docs.oracle.com/en-us/iaas/Content/API/Concepts/sdk_authentication_methods.htm The authentifcation method is passed through auth_type and should be one of: API_KEY (default), SECURITY_TOKEN, INSTANCE_PRINCIPLE, RESOURCE_PRINCIPLE Make sure you have the required policies (profile/roles) to access the OCI Generative AI service. If a specific config profile is used, you must pass the name of the profile (~/.oci/config) through auth_profile. To use, you must provide the compartment id along with the endpoint url, and model id as named parameters to the constructor. Example: .. code-block:: python from langchain.embeddings import OCIGenAIEmbeddings embeddings = OCIGenAIEmbeddings( model_id="MY_EMBEDDING_MODEL", service_endpoint="https://inference.generativeai.us-chicago-1.oci.oraclecloud.com", compartment_id="MY_OCID" ) """ client: Any = None #: :meta private: service_models: Any = None #: :meta private: auth_type: Optional[str] = "API_KEY" """Authentication type, could be API_KEY, SECURITY_TOKEN, INSTANCE_PRINCIPLE, RESOURCE_PRINCIPLE If not specified, API_KEY will be used """ auth_profile: Optional[str] = "DEFAULT" """The name of the profile in ~/.oci/config If not specified , DEFAULT will be used """ model_id: Optional[str] = None """Id of the model to call, e.g., cohere.embed-english-light-v2.0""" model_kwargs: Optional[Dict] = None """Keyword arguments to pass to the model""" service_endpoint: Optional[str] = None """service endpoint url""" compartment_id: Optional[str] = None """OCID of compartment""" truncate: Optional[str] = "END" """Truncate embeddings that are too long from start or end ("NONE"|"START"|"END")""" batch_size: int = 96 """Batch size of OCI GenAI embedding requests. OCI GenAI may handle up to 96 texts per request""" model_config = ConfigDict(extra="forbid", protected_namespaces=())
[docs] @pre_init def validate_environment(cls, values: Dict) -> Dict: # pylint: disable=no-self-argument """Validate that OCI config and python package exists in environment.""" # Skip creating new client if passed in constructor if values["client"] is not None: return values try: import oci client_kwargs = { "config": {}, "signer": None, "service_endpoint": values["service_endpoint"], "retry_strategy": oci.retry.DEFAULT_RETRY_STRATEGY, "timeout": (10, 240), # default timeout config for OCI Gen AI service } if values["auth_type"] == OCIAuthType(1).name: client_kwargs["config"] = oci.config.from_file( profile_name=values["auth_profile"] ) client_kwargs.pop("signer", None) elif values["auth_type"] == OCIAuthType(2).name: def make_security_token_signer(oci_config): # type: ignore[no-untyped-def] pk = oci.signer.load_private_key_from_file( oci_config.get("key_file"), None ) with open( oci_config.get("security_token_file"), encoding="utf-8" ) as f: st_string = f.read() return oci.auth.signers.SecurityTokenSigner(st_string, pk) client_kwargs["config"] = oci.config.from_file( profile_name=values["auth_profile"] ) client_kwargs["signer"] = make_security_token_signer( oci_config=client_kwargs["config"] ) elif values["auth_type"] == OCIAuthType(3).name: client_kwargs["signer"] = ( oci.auth.signers.InstancePrincipalsSecurityTokenSigner() ) elif values["auth_type"] == OCIAuthType(4).name: client_kwargs["signer"] = ( oci.auth.signers.get_resource_principals_signer() ) else: raise ValueError("Please provide valid value to auth_type") values["client"] = oci.generative_ai_inference.GenerativeAiInferenceClient( **client_kwargs ) except ImportError as ex: raise ImportError( "Could not import oci python package. " "Please make sure you have the oci package installed." ) from ex except Exception as e: raise ValueError( "Could not authenticate with OCI client. " "Please check if ~/.oci/config exists. " "If INSTANCE_PRINCIPLE or RESOURCE_PRINCIPLE is used, " "Please check the specified " "auth_profile and auth_type are valid." ) from e return values
@property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" _model_kwargs = self.model_kwargs or {} return { **{"model_kwargs": _model_kwargs}, }
[docs] def embed_documents(self, texts: List[str]) -> List[List[float]]: """Call out to OCIGenAI's embedding endpoint. Args: texts: The list of texts to embed. Returns: List of embeddings, one for each text. """ from oci.generative_ai_inference import models if not self.model_id: raise ValueError("Model ID is required to embed documents") if self.model_id.startswith(CUSTOM_ENDPOINT_PREFIX): serving_mode = models.DedicatedServingMode(endpoint_id=self.model_id) else: serving_mode = models.OnDemandServingMode(model_id=self.model_id) embeddings = [] def split_texts() -> Iterator[List[str]]: for i in range(0, len(texts), self.batch_size): yield texts[i : i + self.batch_size] for chunk in split_texts(): invocation_obj = models.EmbedTextDetails( serving_mode=serving_mode, compartment_id=self.compartment_id, truncate=self.truncate, inputs=chunk, ) response = self.client.embed_text(invocation_obj) embeddings.extend(response.data.embeddings) return embeddings
[docs] def embed_query(self, text: str) -> List[float]: """Call out to OCIGenAI's embedding endpoint. Args: text: The text to embed. Returns: Embeddings for the text. """ return self.embed_documents([text])[0]