langchain_community.embeddings.sparkllm ηš„ζΊδ»£η 

import base64
import hashlib
import hmac
import json
import logging
from datetime import datetime
from time import mktime
from typing import Any, Dict, List, Literal, Optional
from urllib.parse import urlencode
from wsgiref.handlers import format_date_time

import numpy as np
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.utils import (
    secret_from_env,
)
from numpy import ndarray
from pydantic import BaseModel, ConfigDict, Field, SecretStr

# SparkLLMTextEmbeddings is an embedding model provided by iFLYTEK Co., Ltd.. (https://iflytek.com/en/).

# Official Website: https://www.xfyun.cn/doc/spark/Embedding_api.html
# Developers need to create an application in the console first, use the appid, APIKey,
# and APISecret provided in the application for authentication,
# and generate an authentication URL for handshake.
# You can get one by registering at https://console.xfyun.cn/services/bm3.
# SparkLLMTextEmbeddings support 2K token window and preduces vectors with
# 2560 dimensions.

logger = logging.getLogger(__name__)


[docs] class Url: """URL class for parsing the URL."""
[docs] def __init__(self, host: str, path: str, schema: str) -> None: self.host = host self.path = path self.schema = schema pass
[docs] class SparkLLMTextEmbeddings(BaseModel, Embeddings): """SparkLLM embedding model integration. Setup: To use, you should have the environment variable "SPARK_APP_ID","SPARK_API_KEY" and "SPARK_API_SECRET" set your APP_ID, API_KEY and API_SECRET or pass it as a name parameter to the constructor. .. code-block:: bash export SPARK_APP_ID="your-api-id" export SPARK_API_KEY="your-api-key" export SPARK_API_SECRET="your-api-secret" Key init args β€” completion params: api_key: Optional[str] Automatically inferred from env var `SPARK_API_KEY` if not provided. app_id: Optional[str] Automatically inferred from env var `SPARK_APP_ID` if not provided. api_secret: Optional[str] Automatically inferred from env var `SPARK_API_SECRET` if not provided. base_url: Optional[str] Base URL path for API requests. See full list of supported init args and their descriptions in the params section. Instantiate: .. code-block:: python from langchain_community.embeddings import SparkLLMTextEmbeddings embed = SparkLLMTextEmbeddings( api_key="...", app_id="...", api_secret="...", # other ) Embed single text: .. code-block:: python input_text = "The meaning of life is 42" embed.embed_query(input_text) .. code-block:: python [-0.4912109375, 0.60595703125, 0.658203125, 0.3037109375, 0.6591796875, 0.60302734375, ...] Embed multiple text: .. code-block:: python input_texts = ["This is a test query1.", "This is a test query2."] embed.embed_documents(input_texts) .. code-block:: python [ [-0.1962890625, 0.94677734375, 0.7998046875, -0.1971435546875, 0.445556640625, 0.54638671875, ...], [ -0.44970703125, 0.06585693359375, 0.7421875, -0.474609375, 0.62353515625, 1.0478515625, ...], ] """ # noqa: E501 spark_app_id: SecretStr = Field( alias="app_id", default_factory=secret_from_env("SPARK_APP_ID") ) """Automatically inferred from env var `SPARK_APP_ID` if not provided.""" spark_api_key: Optional[SecretStr] = Field( alias="api_key", default_factory=secret_from_env("SPARK_API_KEY", default=None) ) """Automatically inferred from env var `SPARK_API_KEY` if not provided.""" spark_api_secret: Optional[SecretStr] = Field( alias="api_secret", default_factory=secret_from_env("SPARK_API_SECRET", default=None), ) """Automatically inferred from env var `SPARK_API_SECRET` if not provided.""" base_url: str = Field(default="https://emb-cn-huabei-1.xf-yun.com/") """Base URL path for API requests""" domain: Literal["para", "query"] = Field(default="para") """This parameter is used for which Embedding this time belongs to. If "para"(default), it belongs to document Embedding. If "query", it belongs to query Embedding.""" model_config = ConfigDict( populate_by_name=True, ) def _embed(self, texts: List[str], host: str) -> Optional[List[List[float]]]: """Internal method to call Spark Embedding API and return embeddings. Args: texts: A list of texts to embed. host: Base URL path for API requests Returns: A list of list of floats representing the embeddings, or list with value None if an error occurs. """ app_id = "" api_key = "" api_secret = "" if self.spark_app_id: app_id = self.spark_app_id.get_secret_value() if self.spark_api_key: api_key = self.spark_api_key.get_secret_value() if self.spark_api_secret: api_secret = self.spark_api_secret.get_secret_value() url = self._assemble_ws_auth_url( request_url=host, method="POST", api_key=api_key, api_secret=api_secret, ) embed_result: list = [] for text in texts: query_context = {"messages": [{"content": text, "role": "user"}]} content = self._get_body(app_id, query_context) response = requests.post( url, json=content, headers={"content-type": "application/json"} ).text res_arr = self._parser_message(response) if res_arr is not None: embed_result.append(res_arr.tolist()) else: embed_result.append(None) return embed_result
[docs] def embed_documents(self, texts: List[str]) -> Optional[List[List[float]]]: # type: ignore[override] """Public method to get embeddings for a list of documents. Args: texts: The list of texts to embed. Returns: A list of embeddings, one for each text, or None if an error occurs. """ return self._embed(texts, self.base_url)
[docs] def embed_query(self, text: str) -> Optional[List[float]]: # type: ignore[override] """Public method to get embedding for a single query text. Args: text: The text to embed. Returns: Embeddings for the text, or None if an error occurs. """ result = self._embed([text], self.base_url) return result[0] if result is not None else None
@staticmethod def _assemble_ws_auth_url( request_url: str, method: str = "GET", api_key: str = "", api_secret: str = "" ) -> str: u = SparkLLMTextEmbeddings._parse_url(request_url) host = u.host path = u.path now = datetime.now() date = format_date_time(mktime(now.timetuple())) signature_origin = "host: {}\ndate: {}\n{} {} HTTP/1.1".format( host, date, method, path ) signature_sha = hmac.new( api_secret.encode("utf-8"), signature_origin.encode("utf-8"), digestmod=hashlib.sha256, ).digest() signature_sha_str = base64.b64encode(signature_sha).decode(encoding="utf-8") authorization_origin = ( 'api_key="%s", algorithm="%s", headers="%s", signature="%s"' % (api_key, "hmac-sha256", "host date request-line", signature_sha_str) ) authorization = base64.b64encode(authorization_origin.encode("utf-8")).decode( encoding="utf-8" ) values = {"host": host, "date": date, "authorization": authorization} return request_url + "?" + urlencode(values) @staticmethod def _parse_url(request_url: str) -> Url: stidx = request_url.index("://") host = request_url[stidx + 3 :] schema = request_url[: stidx + 3] edidx = host.index("/") if edidx <= 0: raise AssembleHeaderException("invalid request url:" + request_url) path = host[edidx:] host = host[:edidx] u = Url(host, path, schema) return u def _get_body(self, appid: str, text: dict) -> Dict[str, Any]: body = { "header": {"app_id": appid, "uid": "39769795890", "status": 3}, "parameter": { "emb": {"domain": self.domain, "feature": {"encoding": "utf8"}} }, "payload": { "messages": { "text": base64.b64encode(json.dumps(text).encode("utf-8")).decode() } }, } return body @staticmethod def _parser_message( message: str, ) -> Optional[ndarray]: data = json.loads(message) code = data["header"]["code"] if code != 0: logger.warning(f"Request error: {code}, {data}") return None else: text_base = data["payload"]["feature"]["text"] text_data = base64.b64decode(text_base) dt = np.dtype(np.float32) dt = dt.newbyteorder("<") text = np.frombuffer(text_data, dtype=dt) if len(text) > 2560: array = text[:2560] else: array = text return array
[docs] class AssembleHeaderException(Exception): """Exception raised for errors in the header assembly.""" def __init__(self, msg: str) -> None: self.message = msg