langchain_community.embeddings.text2vec ηζΊδ»£η
"""Wrapper around text2vec embedding models."""
from typing import Any, List, Optional
from langchain_core.embeddings import Embeddings
from pydantic import BaseModel, ConfigDict
[docs]
class Text2vecEmbeddings(Embeddings, BaseModel):
"""text2vec embedding models.
Install text2vec first, run 'pip install -U text2vec'.
The github repository for text2vec is : https://github.com/shibing624/text2vec
Example:
.. code-block:: python
from langchain_community.embeddings.text2vec import Text2vecEmbeddings
embedding = Text2vecEmbeddings()
embedding.embed_documents([
"This is a CoSENT(Cosine Sentence) model.",
"It maps sentences to a 768 dimensional dense vector space.",
])
embedding.embed_query(
"It can be used for text matching or semantic search."
)
"""
model_name_or_path: Optional[str] = None
encoder_type: Any = "MEAN"
max_seq_length: int = 256
device: Optional[str] = None
model: Any = None
model_config = ConfigDict(protected_namespaces=())
def __init__(
self,
*,
model: Any = None,
model_name_or_path: Optional[str] = None,
**kwargs: Any,
):
try:
from text2vec import SentenceModel
except ImportError as e:
raise ImportError(
"Unable to import text2vec, please install with "
"`pip install -U text2vec`."
) from e
model_kwargs = {}
if model_name_or_path is not None:
model_kwargs["model_name_or_path"] = model_name_or_path
model = model or SentenceModel(**model_kwargs, **kwargs)
super().__init__(model=model, model_name_or_path=model_name_or_path, **kwargs)
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed documents using the text2vec embeddings model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
return self.model.encode(texts)
[docs]
def embed_query(self, text: str) -> List[float]:
"""Embed a query using the text2vec embeddings model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.model.encode(text)