langchain_community.llms.cloudflare_workersai ηš„ζΊδ»£η 

import json
import logging
from typing import Any, Dict, Iterator, List, Optional

import requests
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk

logger = logging.getLogger(__name__)


[docs] class CloudflareWorkersAI(LLM): """Cloudflare Workers AI service. To use, you must provide an API token and account ID to access Cloudflare Workers AI, and pass it as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.llms.cloudflare_workersai import CloudflareWorkersAI my_account_id = "my_account_id" my_api_token = "my_secret_api_token" llm_model = "@cf/meta/llama-2-7b-chat-int8" cf_ai = CloudflareWorkersAI( account_id=my_account_id, api_token=my_api_token, model=llm_model ) """ # noqa: E501 account_id: str api_token: str model: str = "@cf/meta/llama-2-7b-chat-int8" base_url: str = "https://api.cloudflare.com/client/v4/accounts" streaming: bool = False endpoint_url: str = "" def __init__(self, **kwargs: Any) -> None: """Initialize the Cloudflare Workers AI class.""" super().__init__(**kwargs) self.endpoint_url = f"{self.base_url}/{self.account_id}/ai/run/{self.model}" @property def _llm_type(self) -> str: """Return type of LLM.""" return "cloudflare" @property def _default_params(self) -> Dict[str, Any]: """Default parameters""" return {} @property def _identifying_params(self) -> Dict[str, Any]: """Identifying parameters""" return { "account_id": self.account_id, "api_token": self.api_token, "model": self.model, "base_url": self.base_url, } def _call_api(self, prompt: str, params: Dict[str, Any]) -> requests.Response: """Call Cloudflare Workers API""" headers = {"Authorization": f"Bearer {self.api_token}"} data = {"prompt": prompt, "stream": self.streaming, **params} response = requests.post( self.endpoint_url, headers=headers, json=data, stream=self.streaming ) return response def _process_response(self, response: requests.Response) -> str: """Process API response""" if response.ok: data = response.json() return data["result"]["response"] else: raise ValueError(f"Request failed with status {response.status_code}") def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: """Streaming prediction""" original_steaming: bool = self.streaming self.streaming = True _response_prefix_count = len("data: ") _response_stream_end = b"data: [DONE]" for chunk in self._call_api(prompt, kwargs).iter_lines(): if chunk == _response_stream_end: break if len(chunk) > _response_prefix_count: try: data = json.loads(chunk[_response_prefix_count:]) except Exception as e: logger.debug(chunk) raise e if data is not None and "response" in data: if run_manager: run_manager.on_llm_new_token(data["response"]) yield GenerationChunk(text=data["response"]) logger.debug("stream end") self.streaming = original_steaming def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Regular prediction""" if self.streaming: return "".join( [c.text for c in self._stream(prompt, stop, run_manager, **kwargs)] ) else: response = self._call_api(prompt, kwargs) return self._process_response(response)