langchain_community.llms.ctranslate2 ηζΊδ»£η
from typing import Any, Dict, List, Optional, Union
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, LLMResult
from langchain_core.utils import pre_init
from pydantic import Field
[docs]
class CTranslate2(BaseLLM):
"""CTranslate2 language model."""
model_path: str = ""
"""Path to the CTranslate2 model directory."""
tokenizer_name: str = ""
"""Name of the original Hugging Face model needed to load the proper tokenizer."""
device: str = "cpu"
"""Device to use (possible values are: cpu, cuda, auto)."""
device_index: Union[int, List[int]] = 0
"""Device IDs where to place this generator on."""
compute_type: Union[str, Dict[str, str]] = "default"
"""
Model computation type or a dictionary mapping a device name to the computation type
(possible values are: default, auto, int8, int8_float32, int8_float16,
int8_bfloat16, int16, float16, bfloat16, float32).
"""
max_length: int = 512
"""Maximum generation length."""
sampling_topk: int = 1
"""Randomly sample predictions from the top K candidates."""
sampling_topp: float = 1
"""Keep the most probable tokens whose cumulative probability exceeds this value."""
sampling_temperature: float = 1
"""Sampling temperature to generate more random samples."""
client: Any = None #: :meta private:
tokenizer: Any = None #: :meta private:
ctranslate2_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""
Holds any model parameters valid for `ctranslate2.Generator` call not
explicitly specified.
"""
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that python package exists in environment."""
try:
import ctranslate2
except ImportError:
raise ImportError(
"Could not import ctranslate2 python package. "
"Please install it with `pip install ctranslate2`."
)
try:
import transformers
except ImportError:
raise ImportError(
"Could not import transformers python package. "
"Please install it with `pip install transformers`."
)
values["client"] = ctranslate2.Generator(
model_path=values["model_path"],
device=values["device"],
device_index=values["device_index"],
compute_type=values["compute_type"],
**values["ctranslate2_kwargs"],
)
values["tokenizer"] = transformers.AutoTokenizer.from_pretrained(
values["tokenizer_name"]
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters."""
return {
"max_length": self.max_length,
"sampling_topk": self.sampling_topk,
"sampling_topp": self.sampling_topp,
"sampling_temperature": self.sampling_temperature,
}
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
# build sampling parameters
params = {**self._default_params, **kwargs}
# call the model
encoded_prompts = self.tokenizer(prompts)["input_ids"]
tokenized_prompts = [
self.tokenizer.convert_ids_to_tokens(encoded_prompt)
for encoded_prompt in encoded_prompts
]
results = self.client.generate_batch(tokenized_prompts, **params)
sequences = [result.sequences_ids[0] for result in results]
decoded_sequences = [self.tokenizer.decode(seq) for seq in sequences]
generations = []
for text in decoded_sequences:
generations.append([Generation(text=text)])
return LLMResult(generations=generations)
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "ctranslate2"