langchain_community.llms.edenai ηš„ζΊδ»£η 

"""Wrapper around EdenAI's Generation API."""

import logging
from typing import Any, Dict, List, Literal, Optional

from aiohttp import ClientSession
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import LLM
from langchain_core.utils import get_from_dict_or_env, pre_init
from langchain_core.utils.pydantic import get_fields
from pydantic import ConfigDict, Field, model_validator

from langchain_community.llms.utils import enforce_stop_tokens
from langchain_community.utilities.requests import Requests

logger = logging.getLogger(__name__)


[docs] class EdenAI(LLM): """EdenAI models. To use, you should have the environment variable ``EDENAI_API_KEY`` set with your API token. You can find your token here: https://app.edenai.run/admin/account/settings `feature` and `subfeature` are required, but any other model parameters can also be passed in with the format params={model_param: value, ...} for api reference check edenai documentation: http://docs.edenai.co. """ base_url: str = "https://api.edenai.run/v2" edenai_api_key: Optional[str] = None feature: Literal["text", "image"] = "text" """Which generative feature to use, use text by default""" subfeature: Literal["generation"] = "generation" """Subfeature of above feature, use generation by default""" provider: str """Generative provider to use (eg: openai,stabilityai,cohere,google etc.)""" model: Optional[str] = None """ model name for above provider (eg: 'gpt-3.5-turbo-instruct' for openai) available models are shown on https://docs.edenai.co/ under 'available providers' """ # Optional parameters to add depending of chosen feature # see api reference for more infos temperature: Optional[float] = Field(default=None, ge=0, le=1) # for text max_tokens: Optional[int] = Field(default=None, ge=0) # for text resolution: Optional[Literal["256x256", "512x512", "1024x1024"]] = None # for image params: Dict[str, Any] = Field(default_factory=dict) """ DEPRECATED: use temperature, max_tokens, resolution directly optional parameters to pass to api """ model_kwargs: Dict[str, Any] = Field(default_factory=dict) """extra parameters""" stop_sequences: Optional[List[str]] = None """Stop sequences to use.""" model_config = ConfigDict( extra="forbid", )
[docs] @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that api key exists in environment.""" values["edenai_api_key"] = get_from_dict_or_env( values, "edenai_api_key", "EDENAI_API_KEY" ) return values
@model_validator(mode="before") @classmethod def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in get_fields(cls).values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @property def _llm_type(self) -> str: """Return type of model.""" return "edenai" def _format_output(self, output: dict) -> str: if self.feature == "text": return output[self.provider]["generated_text"] else: return output[self.provider]["items"][0]["image"]
[docs] @staticmethod def get_user_agent() -> str: from langchain_community import __version__ return f"langchain/{__version__}"
def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to EdenAI's text generation endpoint. Args: prompt: The prompt to pass into the model. Returns: json formatted str response. """ stops = None if self.stop_sequences is not None and stop is not None: raise ValueError( "stop sequences found in both the input and default params." ) elif self.stop_sequences is not None: stops = self.stop_sequences else: stops = stop url = f"{self.base_url}/{self.feature}/{self.subfeature}" headers = { "Authorization": f"Bearer {self.edenai_api_key}", "User-Agent": self.get_user_agent(), } payload: Dict[str, Any] = { "providers": self.provider, "text": prompt, "max_tokens": self.max_tokens, "temperature": self.temperature, "resolution": self.resolution, **self.params, **kwargs, "num_images": 1, # always limit to 1 (ignored for text) } # filter None values to not pass them to the http payload payload = {k: v for k, v in payload.items() if v is not None} if self.model is not None: payload["settings"] = {self.provider: self.model} request = Requests(headers=headers) response = request.post(url=url, data=payload) if response.status_code >= 500: raise Exception(f"EdenAI Server: Error {response.status_code}") elif response.status_code >= 400: raise ValueError(f"EdenAI received an invalid payload: {response.text}") elif response.status_code != 200: raise Exception( f"EdenAI returned an unexpected response with status " f"{response.status_code}: {response.text}" ) data = response.json() provider_response = data[self.provider] if provider_response.get("status") == "fail": err_msg = provider_response.get("error", {}).get("message") raise Exception(err_msg) output = self._format_output(data) if stops is not None: output = enforce_stop_tokens(output, stops) return output async def _acall( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call EdenAi model to get predictions based on the prompt. Args: prompt: The prompt to pass into the model. stop: A list of stop words (optional). run_manager: A callback manager for async interaction with LLMs. Returns: The string generated by the model. """ stops = None if self.stop_sequences is not None and stop is not None: raise ValueError( "stop sequences found in both the input and default params." ) elif self.stop_sequences is not None: stops = self.stop_sequences else: stops = stop url = f"{self.base_url}/{self.feature}/{self.subfeature}" headers = { "Authorization": f"Bearer {self.edenai_api_key}", "User-Agent": self.get_user_agent(), } payload: Dict[str, Any] = { "providers": self.provider, "text": prompt, "max_tokens": self.max_tokens, "temperature": self.temperature, "resolution": self.resolution, **self.params, **kwargs, "num_images": 1, # always limit to 1 (ignored for text) } # filter `None` values to not pass them to the http payload as null payload = {k: v for k, v in payload.items() if v is not None} if self.model is not None: payload["settings"] = {self.provider: self.model} async with ClientSession() as session: async with session.post(url, json=payload, headers=headers) as response: if response.status >= 500: raise Exception(f"EdenAI Server: Error {response.status}") elif response.status >= 400: raise ValueError( f"EdenAI received an invalid payload: {response.text}" ) elif response.status != 200: raise Exception( f"EdenAI returned an unexpected response with status " f"{response.status}: {response.text}" ) response_json = await response.json() provider_response = response_json[self.provider] if provider_response.get("status") == "fail": err_msg = provider_response.get("error", {}).get("message") raise Exception(err_msg) output = self._format_output(response_json) if stops is not None: output = enforce_stop_tokens(output, stops) return output