langchain_community.llms.gpt4all ηš„ζΊδ»£η 

from functools import partial
from typing import Any, Dict, List, Mapping, Optional, Set

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.utils import pre_init
from pydantic import ConfigDict, Field

from langchain_community.llms.utils import enforce_stop_tokens


[docs] class GPT4All(LLM): """GPT4All language models. To use, you should have the ``gpt4all`` python package installed, the pre-trained model file, and the model's config information. Example: .. code-block:: python from langchain_community.llms import GPT4All model = GPT4All(model="./models/gpt4all-model.bin", n_threads=8) # Simplest invocation response = model.invoke("Once upon a time, ") """ model: str """Path to the pre-trained GPT4All model file.""" backend: Optional[str] = Field(None, alias="backend") max_tokens: int = Field(200, alias="max_tokens") """Token context window.""" n_parts: int = Field(-1, alias="n_parts") """Number of parts to split the model into. If -1, the number of parts is automatically determined.""" seed: int = Field(0, alias="seed") """Seed. If -1, a random seed is used.""" f16_kv: bool = Field(False, alias="f16_kv") """Use half-precision for key/value cache.""" logits_all: bool = Field(False, alias="logits_all") """Return logits for all tokens, not just the last token.""" vocab_only: bool = Field(False, alias="vocab_only") """Only load the vocabulary, no weights.""" use_mlock: bool = Field(False, alias="use_mlock") """Force system to keep model in RAM.""" embedding: bool = Field(False, alias="embedding") """Use embedding mode only.""" n_threads: Optional[int] = Field(4, alias="n_threads") """Number of threads to use.""" n_predict: Optional[int] = 256 """The maximum number of tokens to generate.""" temp: Optional[float] = 0.7 """The temperature to use for sampling.""" top_p: Optional[float] = 0.1 """The top-p value to use for sampling.""" top_k: Optional[int] = 40 """The top-k value to use for sampling.""" echo: Optional[bool] = False """Whether to echo the prompt.""" stop: Optional[List[str]] = [] """A list of strings to stop generation when encountered.""" repeat_last_n: Optional[int] = 64 "Last n tokens to penalize" repeat_penalty: Optional[float] = 1.18 """The penalty to apply to repeated tokens.""" n_batch: int = Field(8, alias="n_batch") """Batch size for prompt processing.""" streaming: bool = False """Whether to stream the results or not.""" allow_download: bool = False """If model does not exist in ~/.cache/gpt4all/, download it.""" device: Optional[str] = Field("cpu", alias="device") """Device name: cpu, gpu, nvidia, intel, amd or DeviceName.""" client: Any = None #: :meta private: model_config = ConfigDict( extra="forbid", ) @staticmethod def _model_param_names() -> Set[str]: return { "max_tokens", "n_predict", "top_k", "top_p", "temp", "n_batch", "repeat_penalty", "repeat_last_n", "streaming", } def _default_params(self) -> Dict[str, Any]: return { "max_tokens": self.max_tokens, "n_predict": self.n_predict, "top_k": self.top_k, "top_p": self.top_p, "temp": self.temp, "n_batch": self.n_batch, "repeat_penalty": self.repeat_penalty, "repeat_last_n": self.repeat_last_n, "streaming": self.streaming, }
[docs] @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in the environment.""" try: from gpt4all import GPT4All as GPT4AllModel except ImportError: raise ImportError( "Could not import gpt4all python package. " "Please install it with `pip install gpt4all`." ) full_path = values["model"] model_path, delimiter, model_name = full_path.rpartition("/") model_path += delimiter values["client"] = GPT4AllModel( model_name, model_path=model_path or None, model_type=values["backend"], allow_download=values["allow_download"], device=values["device"], ) if values["n_threads"] is not None: # set n_threads values["client"].model.set_thread_count(values["n_threads"]) try: values["backend"] = values["client"].model_type except AttributeError: # The below is for compatibility with GPT4All Python bindings <= 0.2.3. values["backend"] = values["client"].model.model_type return values
@property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model": self.model, **self._default_params(), **{ k: v for k, v in self.__dict__.items() if k in self._model_param_names() }, } @property def _llm_type(self) -> str: """Return the type of llm.""" return "gpt4all" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: r"""Call out to GPT4All's generate method. Args: prompt: The prompt to pass into the model. stop: A list of strings to stop generation when encountered. Returns: The string generated by the model. Example: .. code-block:: python prompt = "Once upon a time, " response = model.invoke(prompt, n_predict=55) """ text_callback = None if run_manager: text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose) text = "" params = {**self._default_params(), **kwargs} for token in self.client.generate(prompt, **params): if text_callback: text_callback(token) text += token if stop is not None: text = enforce_stop_tokens(text, stop) return text