langchain_community.llms.ipex_llm ηš„ζΊδ»£η 

import logging
from typing import Any, List, Mapping, Optional

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from pydantic import ConfigDict

DEFAULT_MODEL_ID = "gpt2"


logger = logging.getLogger(__name__)


[docs] class IpexLLM(LLM): """IpexLLM model. Example: .. code-block:: python from langchain_community.llms import IpexLLM llm = IpexLLM.from_model_id(model_id="THUDM/chatglm-6b") """ model_id: str = DEFAULT_MODEL_ID """Model name or model path to use.""" model_kwargs: Optional[dict] = None """Keyword arguments passed to the model.""" model: Any = None #: :meta private: """IpexLLM model.""" tokenizer: Any = None #: :meta private: """Huggingface tokenizer model.""" streaming: bool = True """Whether to stream the results, token by token.""" model_config = ConfigDict( extra="forbid", )
[docs] @classmethod def from_model_id( cls, model_id: str, model_kwargs: Optional[dict] = None, *, tokenizer_id: Optional[str] = None, load_in_4bit: bool = True, load_in_low_bit: Optional[str] = None, **kwargs: Any, ) -> LLM: """ Construct object from model_id Args: model_id: Path for the huggingface repo id to be downloaded or the huggingface checkpoint folder. tokenizer_id: Path for the huggingface repo id to be downloaded or the huggingface checkpoint folder which contains the tokenizer. load_in_4bit: "Whether to load model in 4bit. Unused if `load_in_low_bit` is not None. load_in_low_bit: Which low bit precisions to use when loading model. Example values: 'sym_int4', 'asym_int4', 'fp4', 'nf4', 'fp8', etc. Overrides `load_in_4bit` if specified. model_kwargs: Keyword arguments to pass to the model and tokenizer. kwargs: Extra arguments to pass to the model and tokenizer. Returns: An object of IpexLLM. """ return cls._load_model( model_id=model_id, tokenizer_id=tokenizer_id, low_bit_model=False, load_in_4bit=load_in_4bit, load_in_low_bit=load_in_low_bit, model_kwargs=model_kwargs, kwargs=kwargs, )
[docs] @classmethod def from_model_id_low_bit( cls, model_id: str, model_kwargs: Optional[dict] = None, *, tokenizer_id: Optional[str] = None, **kwargs: Any, ) -> LLM: """ Construct low_bit object from model_id Args: model_id: Path for the ipex-llm transformers low-bit model folder. tokenizer_id: Path for the huggingface repo id or local model folder which contains the tokenizer. model_kwargs: Keyword arguments to pass to the model and tokenizer. kwargs: Extra arguments to pass to the model and tokenizer. Returns: An object of IpexLLM. """ return cls._load_model( model_id=model_id, tokenizer_id=tokenizer_id, low_bit_model=True, load_in_4bit=False, # not used for low-bit model load_in_low_bit=None, # not used for low-bit model model_kwargs=model_kwargs, kwargs=kwargs, )
@classmethod def _load_model( cls, model_id: str, tokenizer_id: Optional[str] = None, load_in_4bit: bool = False, load_in_low_bit: Optional[str] = None, low_bit_model: bool = False, model_kwargs: Optional[dict] = None, kwargs: Optional[dict] = None, ) -> Any: try: from ipex_llm.transformers import ( AutoModel, AutoModelForCausalLM, ) from transformers import AutoTokenizer, LlamaTokenizer except ImportError: raise ImportError( "Could not import ipex-llm. " "Please install `ipex-llm` properly following installation guides: " "https://github.com/intel-analytics/ipex-llm?tab=readme-ov-file#install-ipex-llm." ) _model_kwargs = model_kwargs or {} kwargs = kwargs or {} _tokenizer_id = tokenizer_id or model_id # Set "cpu" as default device if "device" not in _model_kwargs: _model_kwargs["device"] = "cpu" if _model_kwargs["device"] not in ["cpu", "xpu"]: raise ValueError( "IpexLLMBgeEmbeddings currently only supports device to be " f"'cpu' or 'xpu', but you have: {_model_kwargs['device']}." ) device = _model_kwargs.pop("device") try: tokenizer = AutoTokenizer.from_pretrained(_tokenizer_id, **_model_kwargs) except Exception: tokenizer = LlamaTokenizer.from_pretrained(_tokenizer_id, **_model_kwargs) # restore model_kwargs if "trust_remote_code" in _model_kwargs: _model_kwargs = { k: v for k, v in _model_kwargs.items() if k != "trust_remote_code" } # load model with AutoModelForCausalLM and falls back to AutoModel on failure. load_kwargs = { "use_cache": True, "trust_remote_code": True, } if not low_bit_model: if load_in_low_bit is not None: load_function_name = "from_pretrained" load_kwargs["load_in_low_bit"] = load_in_low_bit # type: ignore else: load_function_name = "from_pretrained" load_kwargs["load_in_4bit"] = load_in_4bit else: load_function_name = "load_low_bit" try: # Attempt to load with AutoModelForCausalLM model = cls._load_model_general( AutoModelForCausalLM, load_function_name=load_function_name, model_id=model_id, load_kwargs=load_kwargs, model_kwargs=_model_kwargs, ) except Exception: # Fallback to AutoModel if there's an exception model = cls._load_model_general( AutoModel, load_function_name=load_function_name, model_id=model_id, load_kwargs=load_kwargs, model_kwargs=_model_kwargs, ) model.to(device) return cls( model_id=model_id, model=model, tokenizer=tokenizer, model_kwargs=_model_kwargs, **kwargs, ) @staticmethod def _load_model_general( model_class: Any, load_function_name: str, model_id: str, load_kwargs: dict, model_kwargs: dict, ) -> Any: """General function to attempt to load a model.""" try: load_function = getattr(model_class, load_function_name) return load_function(model_id, **{**load_kwargs, **model_kwargs}) except Exception as e: logger.error( f"Failed to load model using " f"{model_class.__name__}.{load_function_name}: {e}" ) @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { "model_id": self.model_id, "model_kwargs": self.model_kwargs, } @property def _llm_type(self) -> str: return "ipex-llm" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: if self.streaming: from transformers import TextStreamer input_ids = self.tokenizer.encode(prompt, return_tensors="pt") input_ids = input_ids.to(self.model.device) streamer = TextStreamer( self.tokenizer, skip_prompt=True, skip_special_tokens=True ) if stop is not None: from transformers.generation.stopping_criteria import ( StoppingCriteriaList, ) from transformers.tools.agents import StopSequenceCriteria # stop generation when stop words are encountered # TODO: stop generation when the following one is stop word stopping_criteria = StoppingCriteriaList( [StopSequenceCriteria(stop, self.tokenizer)] ) else: stopping_criteria = None output = self.model.generate( input_ids, streamer=streamer, stopping_criteria=stopping_criteria, **kwargs, ) text = self.tokenizer.decode(output[0], skip_special_tokens=True) return text else: input_ids = self.tokenizer.encode(prompt, return_tensors="pt") input_ids = input_ids.to(self.model.device) if stop is not None: from transformers.generation.stopping_criteria import ( StoppingCriteriaList, ) from transformers.tools.agents import StopSequenceCriteria stopping_criteria = StoppingCriteriaList( [StopSequenceCriteria(stop, self.tokenizer)] ) else: stopping_criteria = None output = self.model.generate( input_ids, stopping_criteria=stopping_criteria, **kwargs ) text = self.tokenizer.decode(output[0], skip_special_tokens=True)[ len(prompt) : ] return text