langchain_community.llms.nlpcloud ηζΊδ»£η
from typing import Any, Dict, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
from pydantic import ConfigDict, SecretStr
[docs]
class NLPCloud(LLM):
"""NLPCloud large language models.
To use, you should have the ``nlpcloud`` python package installed, and the
environment variable ``NLPCLOUD_API_KEY`` set with your API key.
Example:
.. code-block:: python
from langchain_community.llms import NLPCloud
nlpcloud = NLPCloud(model="finetuned-gpt-neox-20b")
"""
client: Any = None #: :meta private:
model_name: str = "finetuned-gpt-neox-20b"
"""Model name to use."""
gpu: bool = True
"""Whether to use a GPU or not"""
lang: str = "en"
"""Language to use (multilingual addon)"""
temperature: float = 0.7
"""What sampling temperature to use."""
max_length: int = 256
"""The maximum number of tokens to generate in the completion."""
length_no_input: bool = True
"""Whether min_length and max_length should include the length of the input."""
remove_input: bool = True
"""Remove input text from API response"""
remove_end_sequence: bool = True
"""Whether or not to remove the end sequence token."""
bad_words: List[str] = []
"""List of tokens not allowed to be generated."""
top_p: float = 1.0
"""Total probability mass of tokens to consider at each step."""
top_k: int = 50
"""The number of highest probability tokens to keep for top-k filtering."""
repetition_penalty: float = 1.0
"""Penalizes repeated tokens. 1.0 means no penalty."""
num_beams: int = 1
"""Number of beams for beam search."""
num_return_sequences: int = 1
"""How many completions to generate for each prompt."""
nlpcloud_api_key: Optional[SecretStr] = None
model_config = ConfigDict(
extra="forbid",
)
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
values["nlpcloud_api_key"] = convert_to_secret_str(
get_from_dict_or_env(values, "nlpcloud_api_key", "NLPCLOUD_API_KEY")
)
try:
import nlpcloud
values["client"] = nlpcloud.Client(
values["model_name"],
values["nlpcloud_api_key"].get_secret_value(),
gpu=values["gpu"],
lang=values["lang"],
)
except ImportError:
raise ImportError(
"Could not import nlpcloud python package. "
"Please install it with `pip install nlpcloud`."
)
return values
@property
def _default_params(self) -> Mapping[str, Any]:
"""Get the default parameters for calling NLPCloud API."""
return {
"temperature": self.temperature,
"max_length": self.max_length,
"length_no_input": self.length_no_input,
"remove_input": self.remove_input,
"remove_end_sequence": self.remove_end_sequence,
"bad_words": self.bad_words,
"top_p": self.top_p,
"top_k": self.top_k,
"repetition_penalty": self.repetition_penalty,
"num_beams": self.num_beams,
"num_return_sequences": self.num_return_sequences,
}
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"model_name": self.model_name},
**{"gpu": self.gpu},
**{"lang": self.lang},
**self._default_params,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "nlpcloud"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to NLPCloud's create endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Not supported by this interface (pass in init method)
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = nlpcloud("Tell me a joke.")
"""
if stop and len(stop) > 1:
raise ValueError(
"NLPCloud only supports a single stop sequence per generation."
"Pass in a list of length 1."
)
elif stop and len(stop) == 1:
end_sequence = stop[0]
else:
end_sequence = None
params = {**self._default_params, **kwargs}
response = self.client.generation(prompt, end_sequence=end_sequence, **params)
return response["generated_text"]