langchain_community.llms.petals ηš„ζΊδ»£η 

import logging
from typing import Any, Dict, List, Mapping, Optional

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
from langchain_core.utils.pydantic import get_fields
from pydantic import ConfigDict, Field, SecretStr, model_validator

from langchain_community.llms.utils import enforce_stop_tokens

logger = logging.getLogger(__name__)


[docs] class Petals(LLM): """Petals Bloom models. To use, you should have the ``petals`` python package installed, and the environment variable ``HUGGINGFACE_API_KEY`` set with your API key. Any parameters that are valid to be passed to the call can be passed in, even if not explicitly saved on this class. Example: .. code-block:: python from langchain_community.llms import petals petals = Petals() """ client: Any = None """The client to use for the API calls.""" tokenizer: Any = None """The tokenizer to use for the API calls.""" model_name: str = "bigscience/bloom-petals" """The model to use.""" temperature: float = 0.7 """What sampling temperature to use""" max_new_tokens: int = 256 """The maximum number of new tokens to generate in the completion.""" top_p: float = 0.9 """The cumulative probability for top-p sampling.""" top_k: Optional[int] = None """The number of highest probability vocabulary tokens to keep for top-k-filtering.""" do_sample: bool = True """Whether or not to use sampling; use greedy decoding otherwise.""" max_length: Optional[int] = None """The maximum length of the sequence to be generated.""" model_kwargs: Dict[str, Any] = Field(default_factory=dict) """Holds any model parameters valid for `create` call not explicitly specified.""" huggingface_api_key: Optional[SecretStr] = None model_config = ConfigDict( extra="forbid", ) @model_validator(mode="before") @classmethod def build_extra(cls, values: Dict[str, Any]) -> Any: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in get_fields(cls).values()} extra = values.get("model_kwargs", {}) for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""WARNING! {field_name} is not default parameter. {field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values
[docs] @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" huggingface_api_key = convert_to_secret_str( get_from_dict_or_env(values, "huggingface_api_key", "HUGGINGFACE_API_KEY") ) try: from petals import AutoDistributedModelForCausalLM from transformers import AutoTokenizer model_name = values["model_name"] values["tokenizer"] = AutoTokenizer.from_pretrained(model_name) values["client"] = AutoDistributedModelForCausalLM.from_pretrained( model_name ) values["huggingface_api_key"] = huggingface_api_key.get_secret_value() except ImportError: raise ImportError( "Could not import transformers or petals python package." "Please install with `pip install -U transformers petals`." ) return values
@property def _default_params(self) -> Dict[str, Any]: """Get the default parameters for calling Petals API.""" normal_params = { "temperature": self.temperature, "max_new_tokens": self.max_new_tokens, "top_p": self.top_p, "top_k": self.top_k, "do_sample": self.do_sample, "max_length": self.max_length, } return {**normal_params, **self.model_kwargs} @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return {**{"model_name": self.model_name}, **self._default_params} @property def _llm_type(self) -> str: """Return type of llm.""" return "petals" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the Petals API.""" params = self._default_params params = {**params, **kwargs} inputs = self.tokenizer(prompt, return_tensors="pt")["input_ids"] outputs = self.client.generate(inputs, **params) text = self.tokenizer.decode(outputs[0]) if stop is not None: # I believe this is required since the stop tokens # are not enforced by the model parameters text = enforce_stop_tokens(text, stop) return text