langchain_community.llms.pipelineai ηζΊδ»£η
import logging
from typing import Any, Dict, List, Mapping, Optional
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
from pydantic import (
BaseModel,
ConfigDict,
Field,
SecretStr,
model_validator,
)
from langchain_community.llms.utils import enforce_stop_tokens
logger = logging.getLogger(__name__)
[docs]
class PipelineAI(LLM, BaseModel):
"""PipelineAI large language models.
To use, you should have the ``pipeline-ai`` python package installed,
and the environment variable ``PIPELINE_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain_community.llms import PipelineAI
pipeline = PipelineAI(pipeline_key="")
"""
pipeline_key: str = ""
"""The id or tag of the target pipeline"""
pipeline_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any pipeline parameters valid for `create` call not
explicitly specified."""
pipeline_api_key: Optional[SecretStr] = None
model_config = ConfigDict(
extra="forbid",
)
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: Dict[str, Any]) -> Any:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = set(list(cls.model_fields.keys()))
extra = values.get("pipeline_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
logger.warning(
f"""{field_name} was transferred to pipeline_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values["pipeline_kwargs"] = extra
return values
[docs]
@pre_init
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
pipeline_api_key = convert_to_secret_str(
get_from_dict_or_env(values, "pipeline_api_key", "PIPELINE_API_KEY")
)
values["pipeline_api_key"] = pipeline_api_key
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
**{"pipeline_key": self.pipeline_key},
**{"pipeline_kwargs": self.pipeline_kwargs},
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "pipeline_ai"
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call to Pipeline Cloud endpoint."""
try:
from pipeline import PipelineCloud
except ImportError:
raise ImportError(
"Could not import pipeline-ai python package. "
"Please install it with `pip install pipeline-ai`."
)
client = PipelineCloud(token=self.pipeline_api_key.get_secret_value()) # type: ignore[union-attr]
params = self.pipeline_kwargs or {}
params = {**params, **kwargs}
run = client.run_pipeline(self.pipeline_key, [prompt, params])
try:
text = run.result_preview[0][0]
except AttributeError:
raise AttributeError(
f"A pipeline run should have a `result_preview` attribute."
f"Run was: {run}"
)
if stop is not None:
# I believe this is required since the stop tokens
# are not enforced by the pipeline parameters
text = enforce_stop_tokens(text, stop)
return text