import logging
from typing import Any, Dict, List, Optional, Union
from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.utils import get_from_dict_or_env
from pydantic import BaseModel, ConfigDict, model_validator
from langchain_community.llms.utils import enforce_stop_tokens
logger = logging.getLogger(__name__)
[docs]
@deprecated(
since="0.3.28",
removal="1.0",
alternative_import="langchain_predictionguard.PredictionGuard",
)
class PredictionGuard(LLM):
"""Prediction Guard large language models.
To use, you should have the ``predictionguard`` python package installed, and the
environment variable ``PREDICTIONGUARD_API_KEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
llm = PredictionGuard(
model="Hermes-3-Llama-3.1-8B",
predictionguard_api_key="your Prediction Guard API key",
)
"""
client: Any = None #: :meta private:
model: Optional[str] = "Hermes-3-Llama-3.1-8B"
"""Model name to use."""
max_tokens: Optional[int] = 256
"""Denotes the number of tokens to predict per generation."""
temperature: Optional[float] = 0.75
"""A non-negative float that tunes the degree of randomness in generation."""
top_p: Optional[float] = 0.1
"""A non-negative float that controls the diversity of the generated tokens."""
top_k: Optional[int] = None
"""The diversity of the generated text based on top-k sampling."""
stop: Optional[List[str]] = None
predictionguard_input: Optional[Dict[str, Union[str, bool]]] = None
"""The input check to run over the prompt before sending to the LLM."""
predictionguard_output: Optional[Dict[str, bool]] = None
"""The output check to run the LLM output against."""
predictionguard_api_key: Optional[str] = None
"""Prediction Guard API key."""
model_config = ConfigDict(extra="forbid")
@model_validator(mode="before")
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the api_key and python package exists in environment."""
pg_api_key = get_from_dict_or_env(
values, "predictionguard_api_key", "PREDICTIONGUARD_API_KEY"
)
try:
from predictionguard import PredictionGuard
values["client"] = PredictionGuard(
api_key=pg_api_key,
)
except ImportError:
raise ImportError(
"Could not import predictionguard python package. "
"Please install it with `pip install predictionguard`."
)
return values
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {"model": self.model}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "predictionguard"
def _get_parameters(self, **kwargs: Any) -> Dict[str, Any]:
# input kwarg conflicts with LanguageModelInput on BaseChatModel
input = kwargs.pop("predictionguard_input", self.predictionguard_input)
output = kwargs.pop("predictionguard_output", self.predictionguard_output)
params = {
**{
"max_tokens": self.max_tokens,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"input": (
input.model_dump() if isinstance(input, BaseModel) else input
),
"output": (
output.model_dump() if isinstance(output, BaseModel) else output
),
},
**kwargs,
}
return params
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out to Prediction Guard's model API.
Args:
prompt: The prompt to pass into the model.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = llm.invoke("Tell me a joke.")
"""
params = self._get_parameters(**kwargs)
stops = None
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
stops = self.stop
else:
stops = stop
response = self.client.completions.create(
model=self.model,
prompt=prompt,
**params,
)
for res in response["choices"]:
if res.get("status", "").startswith("error: "):
err_msg = res["status"].removeprefix("error: ")
raise ValueError(f"Error from PredictionGuard API: {err_msg}")
text = response["choices"][0]["text"]
# If stop tokens are provided, Prediction Guard's endpoint returns them.
# In order to make this consistent with other endpoints, we strip them.
if stops:
text = enforce_stop_tokens(text, stops)
return text