langchain_community.llms.titan_takeoff ηš„ζΊδ»£η 

from enum import Enum
from typing import Any, Iterator, List, Optional

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from pydantic import BaseModel, ConfigDict

from langchain_community.llms.utils import enforce_stop_tokens


[docs] class Device(str, Enum): """The device to use for inference, cuda or cpu""" cuda = "cuda" cpu = "cpu"
[docs] class ReaderConfig(BaseModel): """Configuration for the reader to be deployed in Titan Takeoff API.""" model_config = ConfigDict( protected_namespaces=(), ) model_name: str """The name of the model to use""" device: Device = Device.cuda """The device to use for inference, cuda or cpu""" consumer_group: str = "primary" """The consumer group to place the reader into""" tensor_parallel: Optional[int] = None """The number of gpus you would like your model to be split across""" max_seq_length: int = 512 """The maximum sequence length to use for inference, defaults to 512""" max_batch_size: int = 4 """The max batch size for continuous batching of requests"""
[docs] class TitanTakeoff(LLM): """Titan Takeoff API LLMs. Titan Takeoff is a wrapper to interface with Takeoff Inference API for generative text to text language models. You can use this wrapper to send requests to a generative language model and to deploy readers with Takeoff. Examples: This is an example how to deploy a generative language model and send requests. .. code-block:: python # Import the TitanTakeoff class from community package import time from langchain_community.llms import TitanTakeoff # Specify the embedding reader you'd like to deploy reader_1 = { "model_name": "TheBloke/Llama-2-7b-Chat-AWQ", "device": "cuda", "tensor_parallel": 1, "consumer_group": "llama" } # For every reader you pass into models arg Takeoff will spin # up a reader according to the specs you provide. If you don't # specify the arg no models are spun up and it assumes you have # already done this separately. llm = TitanTakeoff(models=[reader_1]) # Wait for the reader to be deployed, time needed depends on the # model size and your internet speed time.sleep(60) # Returns the query, ie a List[float], sent to `llama` consumer group # where we just spun up the Llama 7B model print(embed.invoke( "Where can I see football?", consumer_group="llama" )) # You can also send generation parameters to the model, any of the # following can be passed in as kwargs: # https://docs.titanml.co/docs/next/apis/Takeoff%20inference_REST_API/generate#request # for instance: print(embed.invoke( "Where can I see football?", consumer_group="llama", max_new_tokens=100 )) """ base_url: str = "http://localhost" """The base URL of the Titan Takeoff (Pro) server. Default = "http://localhost".""" port: int = 3000 """The port of the Titan Takeoff (Pro) server. Default = 3000.""" mgmt_port: int = 3001 """The management port of the Titan Takeoff (Pro) server. Default = 3001.""" streaming: bool = False """Whether to stream the output. Default = False.""" client: Any = None """Takeoff Client Python SDK used to interact with Takeoff API""" def __init__( self, base_url: str = "http://localhost", port: int = 3000, mgmt_port: int = 3001, streaming: bool = False, models: List[ReaderConfig] = [], ): """Initialize the Titan Takeoff language wrapper. Args: base_url (str, optional): The base URL where the Takeoff Inference Server is listening. Defaults to `http://localhost`. port (int, optional): What port is Takeoff Inference API listening on. Defaults to 3000. mgmt_port (int, optional): What port is Takeoff Management API listening on. Defaults to 3001. streaming (bool, optional): Whether you want to by default use the generate_stream endpoint over generate to stream responses. Defaults to False. In reality, this is not significantly different as the streamed response is buffered and returned similar to the non-streamed response, but the run manager is applied per token generated. models (List[ReaderConfig], optional): Any readers you'd like to spin up on. Defaults to []. Raises: ImportError: If you haven't installed takeoff-client, you will get an ImportError. To remedy run `pip install 'takeoff-client==0.4.0'` """ super().__init__( # type: ignore[call-arg] base_url=base_url, port=port, mgmt_port=mgmt_port, streaming=streaming ) try: from takeoff_client import TakeoffClient except ImportError: raise ImportError( "takeoff-client is required for TitanTakeoff. " "Please install it with `pip install 'takeoff-client>=0.4.0'`." ) self.client = TakeoffClient( self.base_url, port=self.port, mgmt_port=self.mgmt_port ) for model in models: self.client.create_reader(model) @property def _llm_type(self) -> str: """Return type of llm.""" return "titan_takeoff" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call out to Titan Takeoff (Pro) generate endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. run_manager: Optional callback manager to use when streaming. Returns: The string generated by the model. Example: .. code-block:: python model = TitanTakeoff() prompt = "What is the capital of the United Kingdom?" # Use of model(prompt), ie `__call__` was deprecated in LangChain 0.1.7, # use model.invoke(prompt) instead. response = model.invoke(prompt) """ if self.streaming: text_output = "" for chunk in self._stream( prompt=prompt, stop=stop, run_manager=run_manager, ): text_output += chunk.text return text_output response = self.client.generate(prompt, **kwargs) text = response["text"] if stop is not None: text = enforce_stop_tokens(text, stop) return text def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: """Call out to Titan Takeoff (Pro) stream endpoint. Args: prompt: The prompt to pass into the model. stop: Optional list of stop words to use when generating. run_manager: Optional callback manager to use when streaming. Yields: A dictionary like object containing a string token. Example: .. code-block:: python model = TitanTakeoff() prompt = "What is the capital of the United Kingdom?" response = model.stream(prompt) # OR model = TitanTakeoff(streaming=True) response = model.invoke(prompt) """ response = self.client.generate_stream(prompt, **kwargs) buffer = "" for text in response: buffer += text.data if "data:" in buffer: # Remove the first instance of "data:" from the buffer. if buffer.startswith("data:"): buffer = "" if len(buffer.split("data:", 1)) == 2: content, _ = buffer.split("data:", 1) buffer = content.rstrip("\n") # Trim the buffer to only have content after the "data:" part. if buffer: # Ensure that there's content to process. chunk = GenerationChunk(text=buffer) buffer = "" # Reset buffer for the next set of data. if run_manager: run_manager.on_llm_new_token(token=chunk.text) yield chunk # Yield any remaining content in the buffer. if buffer: chunk = GenerationChunk(text=buffer.replace("</s>", "")) if run_manager: run_manager.on_llm_new_token(token=chunk.text) yield chunk