langchain_community.llms.xinference ηš„ζΊδ»£η 

from typing import TYPE_CHECKING, Any, Dict, Generator, List, Mapping, Optional, Union

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM

if TYPE_CHECKING:
    from xinference.client import RESTfulChatModelHandle, RESTfulGenerateModelHandle
    from xinference.model.llm.core import LlamaCppGenerateConfig


[docs] class Xinference(LLM): """`Xinference` large-scale model inference service. To use, you should have the xinference library installed: .. code-block:: bash pip install "xinference[all]" If you're simply using the services provided by Xinference, you can utilize the xinference_client package: .. code-block:: bash pip install xinference_client Check out: https://github.com/xorbitsai/inference To run, you need to start a Xinference supervisor on one server and Xinference workers on the other servers Example: To start a local instance of Xinference, run .. code-block:: bash $ xinference You can also deploy Xinference in a distributed cluster. Here are the steps: Starting the supervisor: .. code-block:: bash $ xinference-supervisor Starting the worker: .. code-block:: bash $ xinference-worker Then, launch a model using command line interface (CLI). Example: .. code-block:: bash $ xinference launch -n orca -s 3 -q q4_0 It will return a model UID. Then, you can use Xinference with LangChain. Example: .. code-block:: python from langchain_community.llms import Xinference llm = Xinference( server_url="http://0.0.0.0:9997", model_uid = {model_uid} # replace model_uid with the model UID return from launching the model ) llm.invoke( prompt="Q: where can we visit in the capital of France? A:", generate_config={"max_tokens": 1024, "stream": True}, ) To view all the supported builtin models, run: .. code-block:: bash $ xinference list --all """ # noqa: E501 client: Any server_url: Optional[str] """URL of the xinference server""" model_uid: Optional[str] """UID of the launched model""" model_kwargs: Dict[str, Any] """Keyword arguments to be passed to xinference.LLM""" def __init__( self, server_url: Optional[str] = None, model_uid: Optional[str] = None, **model_kwargs: Any, ): try: from xinference.client import RESTfulClient except ImportError: try: from xinference_client import RESTfulClient except ImportError as e: raise ImportError( "Could not import RESTfulClient from xinference. Please install it" " with `pip install xinference` or `pip install xinference_client`." ) from e model_kwargs = model_kwargs or {} super().__init__( **{ # type: ignore[arg-type] "server_url": server_url, "model_uid": model_uid, "model_kwargs": model_kwargs, } ) if self.server_url is None: raise ValueError("Please provide server URL") if self.model_uid is None: raise ValueError("Please provide the model UID") self.client = RESTfulClient(server_url) @property def _llm_type(self) -> str: """Return type of llm.""" return "xinference" @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { **{"server_url": self.server_url}, **{"model_uid": self.model_uid}, **{"model_kwargs": self.model_kwargs}, } def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call the xinference model and return the output. Args: prompt: The prompt to use for generation. stop: Optional list of stop words to use when generating. generate_config: Optional dictionary for the configuration used for generation. Returns: The generated string by the model. """ model = self.client.get_model(self.model_uid) generate_config: "LlamaCppGenerateConfig" = kwargs.get("generate_config", {}) generate_config = {**self.model_kwargs, **generate_config} if stop: generate_config["stop"] = stop if generate_config and generate_config.get("stream"): combined_text_output = "" for token in self._stream_generate( model=model, prompt=prompt, run_manager=run_manager, generate_config=generate_config, ): combined_text_output += token return combined_text_output else: completion = model.generate(prompt=prompt, generate_config=generate_config) return completion["choices"][0]["text"] def _stream_generate( self, model: Union["RESTfulGenerateModelHandle", "RESTfulChatModelHandle"], prompt: str, run_manager: Optional[CallbackManagerForLLMRun] = None, generate_config: Optional["LlamaCppGenerateConfig"] = None, ) -> Generator[str, None, None]: """ Args: prompt: The prompt to use for generation. model: The model used for generation. stop: Optional list of stop words to use when generating. generate_config: Optional dictionary for the configuration used for generation. Yields: A string token. """ streaming_response = model.generate( prompt=prompt, generate_config=generate_config ) for chunk in streaming_response: if isinstance(chunk, dict): choices = chunk.get("choices", []) if choices: choice = choices[0] if isinstance(choice, dict): token = choice.get("text", "") log_probs = choice.get("logprobs") if run_manager: run_manager.on_llm_new_token( token=token, verbose=self.verbose, log_probs=log_probs ) yield token